Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2009
MCQ (Single Correct Answer)
+2
-0.6
The binary operation â—» is defined as follows: GATE CSE 2009 Discrete Mathematics - Mathematical Logic Question 18 English

Which one of the following is equivalence to $$P \vee Q$$?

A
$$\neg \,Q$$ â—» $$\neg \,P$$
B
$$P$$ â—» $$\neg \,Q$$
C
$$\neg \,P$$ â—» $$Q$$
D
$$\neg \,P$$ â—» $$\neg \,Q$$
2
GATE CSE 2009
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following is the most appropriate logical formula to represent the statement:

"$$Gold\,and\,silver\,ornaments\,are\,precious$$"

The following notations are used:
$$G\left( x \right):\,\,x$$ is a gold ornament.
$$S\left( x \right):\,\,x$$ is a silver ornament.
$$P\left( x \right):\,\,x$$ is precious.

A
$$\forall x\left( {P\left( x \right) \to \left( {G\left( x \right) \wedge S\left( x \right)} \right)} \right)$$
B
$$\forall x\left( {\left( {G\left( x \right) \wedge S\left( x \right)} \right) \to P\left( x \right)} \right)$$
C
$$\exists x\left( {\left( {G\left( x \right) \wedge S\left( x \right)} \right) \to P\left( x \right)} \right)$$
D
$$\forall x\left( {\left( {G\left( x \right) \vee S\left( x \right)} \right) \to P\left( x \right)} \right)$$
3
GATE CSE 2009
MCQ (Single Correct Answer)
+2
-0.6
Consider the following well-formed formulae:

$${\rm I}.$$ $$\,\,\neg \forall x\left( {P\left( x \right)} \right)$$
$${\rm I}{\rm I}.\,\,\,\,\,\,\neg \exists x\left( {P\left( x \right)} \right)$$
$${\rm I}{\rm I}{\rm I}.\,\,\,\,\,\,\neg \exists x\left( {\neg P\left( x \right)} \right)$$
$${\rm I}V.\,\,\,\,\,\,\exists x\left( {\neg P\left( x \right)} \right)$$

Which of the above are equivalent?

A
$${\rm I}$$ and $${\rm I}$$$${\rm I}$$
B
$${\rm I}$$ and $${\rm I}$$$$V$$
C
$${\rm I}$$$${\rm I}$$ and $${\rm I}$$$${\rm I}$$$${\rm I}$$
D
$${\rm I}$$$${\rm I}$$ and $${\rm I}$$$$V$$
4
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
$$P$$ and $$Q$$ are two propositions. Which of the following logical expressions are equivalent?

$${\rm I}.$$ $${\rm P}\, \vee \sim Q$$
$${\rm I}{\rm I}.$$ $$ \sim \left( { \sim {\rm P} \wedge Q} \right)$$
$${\rm I}{\rm I}{\rm I}.$$ $$\left( {{\rm P} \wedge Q} \right) \vee \left( {{\rm P} \wedge \sim Q} \right) \vee \left( { \sim {\rm P} \wedge \sim Q} \right)$$
$${\rm I}V.$$ $$\left( {{\rm P} \wedge Q} \right) \vee \left( {{\rm P} \wedge \sim Q} \right) \vee \left( { \sim {\rm P} \wedge Q} \right)$$

A
Only $${\rm I}$$ and $${\rm I}$$$${\rm I}$$
B
Only $${\rm I}$$, $${\rm I}$$$${\rm I}$$ and $${\rm I}$$$${\rm I}$$$${\rm I}$$
C
Only $${\rm I}$$, $${\rm I}$$$${\rm I}$$ and $${\rm I}$$$$V$$
D
All of $${\rm I}$$, $${\rm I}$$$${\rm I}$$, $${\rm I}$$$${\rm I}$$$${\rm I}$$ and $${\rm I}$$$$V$$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization