Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2007
MCQ (Single Correct Answer)
+2
-0.6
Which one of these first-order logic formulae is valid?
A
$$\forall x\left( {P\left( x \right) \Rightarrow Q\left( x \right)} \right) \Rightarrow \left( {\left( {\forall xP\left( x \right)} \right) \Rightarrow \left( {\forall xQ\left( x \right)} \right)} \right)$$
B
$$\exists x\left( {P\left( x \right) \vee Q\left( x \right)} \right) \Rightarrow \left( {\left( {\exists xP\left( x \right)} \right) \Rightarrow \left( {\exists xQ\left( x \right)} \right)} \right)$$
C
$$\exists x\left( {P\left( x \right) \wedge Q\left( x \right)} \right) \Leftrightarrow \left( {\left( {\exists xP\left( x \right)} \right) \wedge \left( {\exists xQ\left( x \right)} \right)} \right)$$
D
$$\forall x\exists yP\left( {x,y} \right) \Rightarrow \exists y\forall xP\left( {x,y} \right)$$
2
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Which one of the first order predicate calculus statements given below correctly expresses the following English statement?

Tigers and lion attack if they are hungry of threatened.

A
$$\forall x[(tiger(x) \wedge lion(x)) \to $$$$\{ (hungry(x) \vee threatened(x)) \to attacks(x)\} ]$$
B
$$\forall x[(tiger(x) \vee lion(x)) \to $$$$\{ (hungry(x) \wedge threatened(x)) \to attacks(x)\} ]$$
C
$$\forall x[(tiger(x) \vee lion(x)) \to $$$$\{ attacks(x) \to (hungry(x)) \vee threatened(x))\} ]$$
D
$$\forall x[(tiger(x) \vee lion(x)) \to $$$$\{ (hungry(x) \vee threatened(x)) \to attacks(x)\} ]$$
3
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider the following propositional statements:


$${\rm P}1:\,\,\left( {\left( {A \wedge B} \right) \to C} \right) \equiv \left( {\left( {A \to C} \right) \wedge \left( {B \to C} \right)} \right)$$
$${\rm P}2:\,\,\left( {\left( {A \vee B} \right) \to C} \right) \equiv \left( {\left( {A \to C} \right) \vee \left( {B \to C} \right)} \right)$$ Which one of the following is true?

A
$$P1$$ is tautology, but not $$P2$$
B
$$P2$$ is tautology, but not $$P1$$
C
$$P1$$ and $$P2$$ are both tautologies
D
Both $$P1$$ and $$P2$$ are not tautologies
4
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
A logical binary relation $$ \odot $$, is defined as follows: GATE CSE 2006 Discrete Mathematics - Mathematical Logic Question 41 English

Let ~ be the unary negation (NOT) operator, with higher precedence then $$ \odot $$. Which one of the following is equivalent to $$A \wedge B?$$

A
$$\left( { \sim A \odot B} \right)$$
B
$$\left( { \sim A \odot \sim B} \right)$$
C
$$ \sim \left( { \sim A \odot \sim B} \right)$$
D
$$ \sim \left( { \sim A \odot B} \right)$$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization