Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2014 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following Boolean expressions is NOT A tautology?
A
$$\left( {\left( {a \to b} \right) \wedge \left( {b \to c} \right)} \right) \to \left( {a \to c} \right)$$
B
$$\left( {a \leftrightarrow c} \right) \to \left( { \sim b \to \left( {a \wedge c} \right)} \right)$$
C
$$\left( {a \wedge b \wedge c} \right) \to \left( {c \vee a} \right)$$
D
$$A \to \left( {b \to a} \right)$$
2
GATE CSE 2014 Set 1
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following propositional logic formulas is TRUE when exactly two of $$p, q,$$ and $$r$$ are TRUE?
A
$$\left( {\left( {p \leftrightarrow q} \right) \wedge r} \right) \vee \left( {p \wedge q \wedge \sim r} \right)$$
B
$$\left( { \sim \left( {p \leftrightarrow q} \right) \wedge r} \right) \vee \left( {p \wedge q \wedge \sim r} \right)$$
C
$$\left( {\left( {p \to q} \right) \wedge r} \right) \vee \left( {p \wedge q \wedge \sim r} \right)$$
D
$$\left( { \sim \left( {p \leftrightarrow q} \right) \wedge r} \right) \wedge \left( {p \wedge q \wedge \sim r} \right)$$
3
GATE CSE 2013
MCQ (Single Correct Answer)
+2
-0.6
What is the logical translation of the following statement?
"None of my friends are perfect."
A
$$\exists x\left( {F\left( x \right) \wedge \neg P\left( x \right)} \right)$$
B
$$\exists x\left( {\neg F\left( x \right) \wedge P\left( x \right)} \right)$$
C
$$\exists x\left( {\neg F\left( x \right) \wedge \neg P\left( x \right)} \right)$$
D
$$\neg \exists x\left( {F\left( x \right) \wedge P\left( x \right)} \right)$$
4
GATE CSE 2013
MCQ (More than One Correct Answer)
+2
-0
Which one of the following is NOT logically equivalent to $$\neg \exists x\left( {\forall y\left( \alpha \right) \wedge \left( {\forall z\left( \beta \right)} \right)} \right)?$$
A
$$\forall x\left( {\exists z\left( {\neg \beta } \right) \to \forall y\left( \alpha \right)} \right)$$
B
$$\forall x\left( {\forall z\left( \beta \right) \to \exists y\left( {\neg \alpha } \right)} \right)$$
C
$$\forall x\left( {\forall y\left( \alpha \right) \to \exists z\left( {\neg \beta } \right)} \right)$$
D
$$\forall x\left( {\exists y\left( {\neg \alpha } \right) \to \exists z\left( {\neg \beta } \right)} \right)$$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization