Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2005
MCQ (Single Correct Answer)
+2
-0.6
Let $$P, Q$$ and $$R$$ be three atomic prepositional assertions. Let $$X$$ denotes $$\left( {P \vee Q} \right) \to R$$ and $$Y$$ denote $$\left( {P \to R} \right) \vee \left( {Q \to R} \right)$$.

Which one of the following is a tautology?

A
$$X \equiv Y$$
B
$$X \to Y$$
C
$$Y \to X$$
D
$$\neg Y \to X$$
2
GATE CSE 2004
MCQ (Single Correct Answer)
+2
-0.6
The following propositional statement is $$$\left( {P \to \left( {Q \vee R} \right)} \right) \to \left( {\left( {P \wedge Q} \right) \to R} \right)$$$
A
Satisfiable but not valid
B
Valid
C
A contradiction
D
None of the above
3
GATE CSE 2004
MCQ (Single Correct Answer)
+2
-0.6
Let $$p, q, r$$ and $$s$$ be four primitive statements. Consider the following arguments:

$$P:\left[ {\left( {\neg p \vee q} \right) \wedge \left( {r \to s} \right) \wedge \left( {p \vee r} \right)} \right] \to \left( {\neg s \to q} \right)$$
$$Q:\left[ {\left( {\neg p \wedge q} \right) \wedge \left[ {q \to \left( {p \to r} \right)} \right]} \right] \to \neg r$$
$$R:\left[ {\left[ {\left( {q \wedge r} \right) \to p} \right] \wedge \left( {\neg q \vee p} \right)} \right] \to r$$
$$S:\left[ {p \wedge \left( {p \to r} \right) \wedge \left( {q \vee \neg r} \right)} \right] \to q$$

Which of the above arguments are valid?

A
$$P$$ and $$Q$$ only
B
$$P$$ and $$R$$ only
C
$$P$$ and $$S$$ only
D
$$P, Q, R$$ and $$S$$
4
GATE CSE 2003
MCQ (Single Correct Answer)
+2
-0.6
The following resolution rule is used in logic programming. Derive clause $$\left( {P \vee Q} \right)$$ from clauses $$\left( {P \vee R} \right)$$, $$\left( {Q \vee \neg R} \right)$$.

Which of the following statements related to this rule is FALSE?

A
$$\left( {\left( {P \vee R} \right) \wedge \left( {Q \vee \neg R} \right)} \right) \Rightarrow \left( {P \vee Q} \right)$$ is logically valid
B
$$\left( {P \vee Q} \right) \Rightarrow \left( {\left( {P \vee R} \right) \wedge \left( {Q \vee \neg R} \right)} \right)$$ is logically valid
C
$$\left( {P \vee Q} \right)$$ is satisfiable if and only if $${\left( {P \vee R} \right) \wedge \left( {Q \vee \neg R} \right)}$$ is satisfiable
D
$$\left( {P \vee Q} \right) \Rightarrow $$ FALSE if and only if both $$P$$ and $$Q$$ are unsatisfiable
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization