Matrices and Determinants
Practice Questions
MCQ (Single Correct Answer)
1

The values of x for which the given matrix $$\left[ {\matrix{ { - x} & x & 2 \cr 2 & x & { - x} \cr x & { - 2} & { - x} \cr } } \right]$$ will be non-singular are

WB JEE 2008
2

If the matrix $$\left[ {\matrix{ a & b \cr c & d \cr } } \right]$$ is commutative with the matrix $$\left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right]$$ then

WB JEE 2008
3

If A is a square matrix. Then

WB JEE 2009
4

If A2 $$-$$ A + I = 0, then the inverse of the matrix A is

WB JEE 2009
5

If A and B are square matrices of the same order and AB = 3I, then A$$-$$1 is equal to

WB JEE 2009
6

If the matrices $$A = \left[ {\matrix{ 2 & 1 & 3 \cr 4 & 1 & 0 \cr } } \right]$$ and $$B = \left[ {\matrix{ 1 & { - 1} \cr 0 & 2 \cr 5 & 0 \cr } } \right]$$, then AB will be

WB JEE 2010
7

If $$\omega$$ is an imaginary cube root of unity and $$\left| {\matrix{ {x + {\omega ^2}} & \omega & 1 \cr \omega & {{\omega ^2}} & {1 + x} \cr 1 & {x + \omega } & {{\omega ^2}} \cr } } \right| = 0$$, then one of the values of x is

WB JEE 2010
8

If $$A = \left[ {\matrix{ 1 & 2 \cr { - 4} & { - 1} \cr } } \right]$$ then A$$-$$1 is

WB JEE 2010
9

If A and B are two matrices such that A + B and AB are both defined, then

WB JEE 2011
10

If $$A = \left( {\matrix{ 3 & {x - 1} \cr {2x + 3} & {x + 2} \cr } } \right)$$ is a symmetric matrix, then the value of x is

WB JEE 2011
11

If $$z = \left| {\matrix{ 1 & {1 + 2i} & { - 5i} \cr {1 - 2i} & { - 3} & {5 + 3i} \cr {5i} & {5 - 3i} & 7 \cr } } \right|$$, then $$(i = \sqrt { - 1} )$$

WB JEE 2011
12

If one of the cube roots of 1 be $$\omega$$, then $$\left| {\matrix{ 1 & {1 + {\omega ^2}} & {{\omega ^2}} \cr {1 - i} & { - 1} & {{\omega ^2} - 1} \cr { - i} & { - 1 + \omega } & { - 1} \cr } } \right| = $$

WB JEE 2011
13

$$\left| {\matrix{ {a - b} & {b - c} & {c - a} \cr {b - c} & {c - a} & {a - b} \cr {c - a} & {a - b} & {b - c} \cr } } \right| = $$

WB JEE 2011
14
$$P = \left[ {\matrix{ 1 & 2 & 1 \cr 1 & 3 & 1 \cr } } \right],Q = P{P^T}$$, then the value of determinant of Q is
WB JEE 2012
15

If the matrix $\left(\begin{array}{ccc}0 & a & a \\ 2 b & b & -b \\ c & -c & c\end{array}\right)$ is orthogonal, then the values of $a, b, c$ are

WB JEE 2025
16

Let $A=\left[\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 5 \alpha \\ 0 & 0 & 5\end{array}\right]$. If $|A|^2=25$, then $|\alpha|$ equals to

WB JEE 2025
17

An $n \times n$ matrix is formed using 0, 1 and $-$1 as its elements. The number of such matrices which are skew symmetric is

WB JEE 2025
18

Suppose $\alpha, \beta, \gamma$ are the roots of the equation $x^3+q x+r=0($ with $r \neq 0)$ and they are in A.P. Then the rank of the matrix $\left(\begin{array}{lll}\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta\end{array}\right)$ is

WB JEE 2025
19

If $\operatorname{adj} B=A,|P|=|Q|=1$, then $\operatorname{adj}\left(Q^{-1} B P^{-1}\right)=$

WB JEE 2025
20

If for a matrix $A,|A|=6$ and adj $A=\left[\begin{array}{ccc}1 & -2 & 4 \\ 4 & 1 & 1 \\ -1 & k & 0\end{array}\right]$, then $k$ is equal to

WB JEE 2025
21

If $a, b, c$ are positive real numbers each distinct from unity, then the value of the determinant $\left|\begin{array}{ccc}1 & \log _a b & \log _a c \\ \log _b a & 1 & \log _b c \\ \log _c a & \log _c b & 1\end{array}\right|$ is

WB JEE 2025
22

If $$A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$$ and $$\theta=\frac{2 \pi}{7}$$, then $$A^{100}=A \times A \times \ldots .(100$$ times) is equal to

WB JEE 2024
23

$$ \text { If }\left|\begin{array}{lll} x^k & x^{k+2} & x^{k+3} \\ y^k & y^{k+2} & y^{k+3} \\ z^k & z^{k+2} & z^{k+3} \end{array}\right|=(x-y)(y-z)(z-x)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \text {, then } $$

WB JEE 2024
24

If $$\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] \cdot A \cdot\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$$, then $$A=$$

WB JEE 2024
25

Let $$A=\left(\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & 1\end{array}\right), B=\left(\begin{array}{l}2 \\ 1 \\ 7\end{array}\right)$$

Then for the validity of the result $$\mathrm{AX}=\mathrm{B}, \mathrm{X}$$ is

WB JEE 2024
26

Let $$A=\left[\begin{array}{ccc}0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0\end{array}\right]$$, then

WB JEE 2024
27

Let A and B are orthogonal matrices and det A + det B = 0. Then

WB JEE 2023
28

Let $$A = \left( {\matrix{ 2 & 0 & 3 \cr 4 & 7 & {11} \cr 5 & 4 & 8 \cr } } \right)$$. Then

WB JEE 2023
29

If the matrix Mr is given by $${M_r} = \left( {\matrix{ r & {r - 1} \cr {r - 1} & r \cr } } \right)$$ for r = 1, 2, 3, ... then det (M1) + det (M2) + ... + det (M2008) =

WB JEE 2023
30

Let $$\alpha,\beta$$ be the roots of the equation $$a{x^2} + bx + c = 0,a,b,c$$ real and $${s_n} = {\alpha ^n} + {\beta ^n}$$ and $$\left| {\matrix{ 3 & {1 + {s_1}} & {1 + {s_2}} \cr {1 + {s_1}} & {1 + {s_2}} & {1 + {s_3}} \cr {1 + {s_2}} & {1 + {s_3}} & {1 + {s_4}} \cr } } \right| = k{{{{(a + b + c)}^2}} \over {{a^4}}}$$ then $$k = $$

WB JEE 2023
31

Let $$A = \left( {\matrix{ 0 & 0 & 1 \cr 1 & 0 & 0 \cr 0 & 0 & 0 \cr } } \right),B = \left( {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr 0 & 0 & 0 \cr } } \right)$$ and $$P\left( {\matrix{ 0 & 1 & 0 \cr x & 0 & 0 \cr 0 & 0 & y \cr } } \right)$$ be an orthogonal matrix such that $$B = PA{P^{ - 1}}$$ holds. Then

WB JEE 2023
32

Under which of the following condition(s) does(do) the system of equations $$\left( {\matrix{ 1 & 2 & 4 \cr 2 & 1 & 2 \cr 1 & 2 & {(a - 4)} \cr } } \right)\left( {\matrix{ x \cr y \cr z \cr } } \right) = \left( {\matrix{ 6 \cr 4 \cr a \cr } } \right)$$ possesses(possess) unique solution ?

WB JEE 2022
33

If $$\Delta (x) = \left| {\matrix{ {x - 2} & {{{(x - 1)}^2}} & {{x^3}} \cr {x - 1} & {{x^2}} & {{{(x + 1)}^3}} \cr x & {{{(x + 1)}^2}} & {{{(x + 2)}^3}} \cr } } \right|$$, then coefficient of x in $$\Delta$$x is

WB JEE 2022
34

If $$p = \left[ {\matrix{ 1 & \alpha & 3 \cr 1 & 3 & 3 \cr 2 & 4 & 4 \cr } } \right]$$ is the adjoint of the $$3 \times 3$$ matrix A and det A = 4, then $$\alpha$$ is equal to

WB JEE 2022
35

If $$A = \left( {\matrix{ 1 & 1 \cr 0 & i \cr } } \right)$$ and $${A^{2018}} = \left( {\matrix{ a & b \cr c & d \cr } } \right)$$, then $$(a + d)$$ equals

WB JEE 2022
36

The solution of $$\det (A - \lambda {I_2}) = 0$$ be 4 and 8 and $$A = \left( {\matrix{ 2 & 2 \cr x & y \cr } } \right)$$. Then

(I2 is identity matrix of order 2)

WB JEE 2022
37
If M is a 3 $$\times$$ 3 matrix such that (0, 1, 2) M = (1 0 0), (3, 4 5) M = (0, 1, 0), then (6 7 8) M is equal to
WB JEE 2021
38
Let $$A = \left( {\matrix{ 1 & 0 & 0 \cr 0 & {\cos t} & {\sin t} \cr 0 & { - \sin t} & {\cos t} \cr } } \right)$$

Let $$\lambda$$1, $$\lambda$$2, $$\lambda$$3 be the roots of $$\det (A - \lambda {I_3}) = 0$$, where I3 denotes the identity matrix. If $$\lambda$$1 + $$\lambda$$2 + $$\lambda$$3 = $$\sqrt 2 $$ + 1, then the set of possible values of t, $$-$$ $$\pi$$ $$\ge$$ t < $$\pi$$ is
WB JEE 2021
39
Let A and B two non singular skew symmetric matrices such that AB = BA, then A2B2(ATB)$$-$$1(AB$$-$$1)T is equal to
WB JEE 2021
40
If an (> 0) be the nth term of a G.P. then

$$\left| {\matrix{ {\log {a_n}} & {\log {a_{n + 1}}} & {\log {a_{n + 2}}} \cr {\log {a_{n + 3}}} & {\log {a_{n + 4}}} & {\log {a_{n + 5}}} \cr {\log {a_{n + 6}}} & {\log {a_{n + 7}}} & {\log {a_{n + 8}}} \cr } } \right|$$ is equal to
WB JEE 2021
41
Let T and U be the set of all orthogonal matrices of order 3 over R and the set of all non-singular matrices of order 3 over R respectively. Let A = {$$-$$1, 0, 1}, then
WB JEE 2021
42
The determinant $$\left| {\matrix{ {{a^2} + 10} & {ab} & {ac} \cr {ab} & {{b^2} + 10} & {bc} \cr {ac} & {bc} & {{c^2} + 10} \cr } } \right|$$ is
WB JEE 2021
43
Let A = $$\left( {\matrix{ {3 - t} \cr { - 1} \cr 0 \cr } \matrix{ {} \cr {} \cr {} \cr } \,\matrix{ 1 \cr {3 - t} \cr { - 1} \cr } \matrix{ {} \cr {} \cr {} \cr } \matrix{ 0 \cr 1 \cr 0 \cr } } \right)$$ and det A = 5, then
WB JEE 2020
44
Let $$A = \left[ {\matrix{ {12} & {24} & 5 \cr x & 6 & 2 \cr { - 1} & { - 2} & 3 \cr } } \right]$$. The value of x for which the matrix A is not invertible is
WB JEE 2020
45
Let $$A = \left( {\matrix{ a & b \cr c & d \cr } } \right)$$ be a 2 $$ \times $$ 2 real matrix with det A = 1. If the equation det (A $$ - $$ $$\lambda $$I2) = 0 has imaginary roots (I2 be the identity matrix of order 2), then
WB JEE 2020
46
If $$\left| {\matrix{ {{a^2}} & {bc} & {{c^2} + ac} \cr {{a^2} + ab} & {{b^2}} & {ca} \cr {ab} & {{b^2} + bc} & {{c^2}} \cr } } \right| = k{a^2}{b^2}{c^2}$$,

then K =
WB JEE 2020
47
If f : S $$ \to $$ R, where S is the set of all non-singular matrices of order 2 over R and $$f\left[ {\left( {\matrix{ a & b \cr c & d \cr } } \right)} \right] = ad - bc$$, then
WB JEE 2020
48
If the vectors $$\alpha = \widehat i + a\widehat j + {a^2}\widehat k,\,\beta = \widehat i + b\widehat j + {b^2}\widehat k$$ and $$\,\gamma = \widehat i + c\widehat j + {c^2}\widehat k$$ are three non-coplanar

vectors and $$\left| {\matrix{ a & {{a^2}} & {1 + {a^3}} \cr b & {{b^2}} & {1 + {b^3}} \cr c & {{c^2}} & {1 + {c^3}} \cr } } \right| = 0$$, then the value of abc is
WB JEE 2020
49
Let A be a square matrix of order 3 whose all entries are 1 and let I3 be the identity matrix of order 3. Then, the matrix $$A - 3{I_3}$$ is
WB JEE 2019
50
If M is any square matrix of order 3 over R and if M' be the transpose of M, then adj(M') $$-$$ (adj M)' is equal to
WB JEE 2019
51
If $$A = \left( {\matrix{ 5 & {5x} & x \cr 0 & x & {5x} \cr 0 & 0 & 5 \cr } } \right)$$ and $$|A{|^2} = 25$$, then | x | is equal to
WB JEE 2019
52
Let A and B be two square matrices of order 3 and AB = O3, where O3 denotes the null matrix of order 3. Then,
WB JEE 2019
53
The system of equations

$$\eqalign{ & \lambda x + y + 3z = 0 \cr & 2x + \mu y - z = 0 \cr & 5x + 7y + z = 0 \cr} $$

has infinitely many solutions in R. Then,
WB JEE 2019
54
If $$\left| {\matrix{ { - 1} & 7 & 0 \cr 2 & 1 & { - 3} \cr 3 & 4 & 1 \cr } } \right| = A$$, then $$\left| {\matrix{ {13} & { - 11} & 5 \cr { - 7} & { - 1} & {25} \cr { - 21} & { - 3} & { - 15} \cr } } \right|$$ is
WB JEE 2018
55
If $${S_r} = \left| {\matrix{ {2r} & x & {n(n + 1)} \cr {6{r^2} - 1} & y & {{n^2}(2n + 3)} \cr {4{r^3} - 2nr} & z & {{n^3}(n + 1)} \cr } } \right|$$, then the value of

$$\sum\limits_{r = 1}^n {{S_r}} $$ is independent of
WB JEE 2018
56
If the following three linear equations have a non-trivial solution, then

x + 4ay + az = 0

x + 3by + bz = 0

x + 2cy + cz = 0
WB JEE 2018
57
The least positive integer n such that $${\left( {\matrix{ {\cos \pi /4} & {\sin \pi /4} \cr { - \sin {\pi \over 4}} & {\cos {\pi \over 4}} \cr } } \right)^n}$$ is an identity matrix of order 2 is
WB JEE 2018
58
If the polynomial $$f(x) = \left| {\matrix{ {{{(1 + x)}^a}} & {{{(2 + x)}^b}} & 1 \cr 1 & {{{(1 + x)}^a}} & {{{(2 + x)}^b}} \cr {{{(2 + x)}^b}} & 1 & {{{(1 + x)}^a}} \cr } } \right|$$, then the constant term of f(x) is
WB JEE 2018
59
The linear system of equations

$$\left. \matrix{ 8x - 3y - 5z = 0 \hfill \cr 5x - 8y + 3z = 0 \hfill \cr 3x + 5y - 8z = 0 \hfill \cr} \right\}$$ has
WB JEE 2017
60
Let P be the set of all non-singular matrices of order 3 over R and Q be the set of all orthogonal matrices of order 3 over R. Then,
WB JEE 2017
61
Let $$A = \left( {\matrix{ {x + 2} & {3x} \cr 3 & {x + 2} \cr } } \right),\,B = \left( {\matrix{ x & 0 \cr 5 & {x + 2} \cr } } \right)$$. Then all solutions of the equation det (AB) = 0 is
WB JEE 2017
62
The value of det A, where $$A\, = \left( {\matrix{ 1 & {\cos \theta } & 0 \cr { - \cos \theta } & 1 & {\cos \theta } \cr { - 1} & { - \cos \theta } & 1 \cr } } \right)$$, lies
WB JEE 2017
63
Let $$A = \left( {\matrix{ 1 & 1 & 1 \cr 0 & 1 & 1 \cr 0 & 0 & 1 \cr } } \right)$$. Then, for positive integer n, An is
WB JEE 2017
64
Let a, b, c be such that b(a + c) $$ \ne $$ 0. If $$\left| {\matrix{ a & {a + 1} & {a - 1} \cr { - b} & {b + 1} & {b - 1} \cr c & {c - 1} & {c + 1} \cr } } \right| + \left| {\matrix{ {a + 1} & {b + 1} & {c - 1} \cr {a - 1} & {b - 1} & {c + 1} \cr {{{( - 1)}^{n + 2}}a} & {{{( - 1)}^{n + 1}}b} & {{{( - 1)}^n}c} \cr } } \right| = 0$$, then the value of n is
WB JEE 2017
65
If x, y and z are greater than 1, then the value of $$\left| {\matrix{ 1 & {{{\log }_x}y} & {{{\log }_x}z} \cr {{{\log }_y}x} & 1 & {{{\log }_y}z} \cr {{{\log }_z}x} & {{{\log }_z}y} & 1 \cr } } \right|$$ is
WB JEE 2016
66
Let A be a 3 $$ \times $$ 3 matrix and B be its adjoint matrix. If | B | = 64, then | A | is equal to
WB JEE 2016