Trigonometry
Inverse Trigonometric Functions
MCQ (Single Correct Answer)Subjective
1
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25

If $a, b, c$ are positive real numbers each distinct from unity, then the value of the determinant $\left|\begin{array}{ccc}1 & \log _a b & \log _a c \\ \log _b a & 1 & \log _b c \\ \log _c a & \log _c b & 1\end{array}\right|$ is

A
0
B
1
C
$\log _e(a b c)$
D
$\log _e a \log _e b \log _e c$
2
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25

If $$A=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$$ and $$\theta=\frac{2 \pi}{7}$$, then $$A^{100}=A \times A \times \ldots .(100$$ times) is equal to

A
$$ \left(\begin{array}{cc} \cos 2 \theta & -\sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta \end{array}\right) $$
B
$$ \left(\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right) $$
C
$$ \left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) $$
D
$$ \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) $$
3
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25

$$ \text { If }\left|\begin{array}{lll} x^k & x^{k+2} & x^{k+3} \\ y^k & y^{k+2} & y^{k+3} \\ z^k & z^{k+2} & z^{k+3} \end{array}\right|=(x-y)(y-z)(z-x)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \text {, then } $$

A
k = $$-$$3
B
k = 3
C
k = 1
D
k = $$-$$1
4
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25

If $$\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] \cdot A \cdot\left[\begin{array}{cc}-3 & 2 \\ 5 & -3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$$, then $$A=$$

A
$$\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$$
B
$$\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$$
C
$$\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$$
D
$$\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$$
WB JEE Subjects