Definite Integration
Practice Questions
MCQ (Single Correct Answer)
1

$$\int\limits_{ - \pi /2}^{\pi /2} {{{\sin }^9}x{{\cos }^5}x\,dx} $$ equals

WB JEE 2008
2

If $$I = \int\limits_{ - \pi }^\pi {{{{e^{\sin x}}} \over {{e^{\sin x}} + {e^{ - \sin x}}}}dx} $$, then I equals

WB JEE 2008
3

If $$h(x) = \int\limits_0^x {{{\sin }^4}t\,dt} $$, then $$h(x + \pi )$$ equals

WB JEE 2008
4

The value of the integral $$\int\limits_0^2 {|{x^2} - 1|dx} $$ is

WB JEE 2008
5

The value of $$\int\limits_0^\pi {|\cos x|dx} $$ is

WB JEE 2008
6

The value of $$\int\limits_{ - 3}^3 {(a{x^5} + b{x^3} + cx + k)dx} $$, where a, b, c, k are constants, depends only on

WB JEE 2008
7

The value of the integral $$\int\limits_{ - a}^a {{{x{e^{{x^2}}}} \over {1 + {x^2}}}dx} $$ is

WB JEE 2008
8

The value of the $$\mathop {\lim }\limits_{n \to \infty } \left( {{1 \over {n + 1}} + {1 \over {n + 2}} + ... + {1 \over {6n}}} \right)$$ is

WB JEE 2008
9

If $$f(x) = f(a - x)$$, then $$\int\limits_0^a {xf(x)dx} $$ is equal to

WB JEE 2009
10

The value of $$\int\limits_0^\infty {{{dx} \over {({x^2} + 4)({x^2} + 9)}}} $$ is

WB JEE 2009
11

If $${I_1} = \int\limits_0^{\pi /4} {{{\sin }^2}xdx} $$ and $${I_2} = \int\limits_0^{\pi /4} {{{\cos }^2}xdx} $$, then

WB JEE 2009
12

$$\int\limits_{ - 1}^4 {f(x)dx = 4} $$ and $$\int\limits_2^4 {\{ 3 - f(x)\} dx = 7} $$, then the value of $$\int\limits_{ - 1}^2 {f(x)dx} $$ is

WB JEE 2009
13

$$\int\limits_0^{1000} {{e^{x - [x]}}dx} $$ is equal to

WB JEE 2009
14

The value of the integral $$\int\limits_0^{\pi /2} {{{\sin }^5}xdx} $$ is

WB JEE 2010
15

If $${d \over {dx}}\{ f(x)\} = g(x)$$, then $$\int\limits_a^b {f(x)g(x)dx} $$ is equal to

WB JEE 2010
16

If $${I_1} = \int\limits_0^{3\pi } {f({{\cos }^2}x)dx} $$ and $${I_2} = \int\limits_0^\pi {f({{\cos }^2}x)dx} $$, then

WB JEE 2010
17

The value of $$I = \int\limits_{ - \pi /2}^{\pi /2} {|\sin x|dx} $$ is

WB JEE 2010
18

If $$I = \int\limits_0^1 {{{dx} \over {1 + {x^{\pi /2}}}}} $$, then

WB JEE 2010
19

The value of $$\int\limits_{ - 2}^2 {(x\cos x + \sin x + 1)dx} $$ is

WB JEE 2011
20

$$\int\limits_\pi ^{16\pi } {|\sin x|dx = } $$

WB JEE 2011
21

The value of $$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{r = 1}^n {{{{r^3}} \over {{r^4} + {n^4}}}} $$ is

WB JEE 2011
22

The value of $$\int\limits_0^\pi {{{\sin }^{50}}x{{\cos }^{49}}x\,dx} $$ is

WB JEE 2011
23

The value of the integral $\int\limits_3^6 \frac{\sqrt{x}}{\sqrt{9-x}+\sqrt{x}} d x$ is

WB JEE 2025
24

$\int_\limits{-1}^1 \frac{x^3+|x|+1}{x^2+2|x|+1} d x$ is equal to

WB JEE 2025
25

$\int\limits_0^{1 \cdot 5}\left[x^2\right] d x$ is equal to

WB JEE 2025
26

The value of the integral $\int_0^{\pi / 2} \log \left(\frac{4+3 \sin x}{4+3 \cos x}\right) d x$ is

WB JEE 2025
27

Let $f(x)=\max \{x+|x|, x-[x]\}$, where $[x]$ stands for the greatest integer not greater than $x$. Then $\int\limits_{-3}^3 f(x) d x$ has the value

WB JEE 2025
28

All values of a for which the inequality $$\frac{1}{\sqrt{a}} \int_\limits1^a\left(\frac{3}{2} \sqrt{x}+1-\frac{1}{\sqrt{x}}\right) \mathrm{d} x<4$$ is satisfied, lie in the interval

WB JEE 2024
29

For any integer $$\mathrm{n}, \int_\limits0^\pi \mathrm{e}^{\cos ^2 x} \cdot \cos ^3(2 n+1) x \mathrm{~d} x$$ has the value :

WB JEE 2024
30

If $$\mathrm{f}(x)=\frac{\mathrm{e}^x}{1+\mathrm{e}^x}, \mathrm{I}_1=\int_\limits{\mathrm{f}(-\mathrm{a})}^{\mathrm{f}(\mathrm{a})} x \mathrm{~g}(x(1-x)) \mathrm{d} x$$ and $$\mathrm{I}_2=\int_\limits{\mathrm{f}(-\mathrm{a})}^{\mathrm{f}(\mathrm{a})} \mathrm{g}(x(1-x)) \mathrm{d} x$$, then the value of $$\frac{I_2}{I_1}$$ is

WB JEE 2024
31

Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a differentiable function and $$f(1)=4$$. Then the value of $$\lim _\limits{x \rightarrow 1} \int_\limits4^{f(x)} \frac{2 t}{x-1} d t$$, if $$f^{\prime}(1)=2$$ is

WB JEE 2024
32

Let $$\mathrm{I}(\mathrm{R})=\int_\limits0^{\mathrm{R}} \mathrm{e}^{-\mathrm{R} \sin x} \mathrm{~d} x, \mathrm{R}>0$$. then,

WB JEE 2024
33

$$\lim _\limits{n \rightarrow \infty} \frac{1}{n^{k+1}}[2^k+4^k+6^k+\ldots .+(2 n)^k]=$$

WB JEE 2024
34

the expression $${{\int\limits_0^n {[x]dx} } \over {\int\limits_0^n {\{ x\} dx} }}$$, where $$[x]$$ and $$\{ x\} $$ are respectively integral and fractional part of $$x$$ and $$n \in N$$, is equal to

WB JEE 2023
35

The value $$\int\limits_0^{1/2} {{{dx} \over {\sqrt {1 - {x^{2n}}} }}} $$ is $$(n \in N)$$

WB JEE 2023
36

If $${I_n} = \int\limits_0^{{\pi \over 2}} {{{\cos }^n}x\cos nxdx} $$, then I$$_1$$, I$$_2$$, I$$_3$$ ... are in

WB JEE 2023
37

$$\int\limits_0^{2\pi } {\theta {{\sin }^6}\theta \cos \theta d\theta } $$ is equal to

WB JEE 2023
38

The average ordinate of $$y = \sin x$$ over $$[0,\pi ]$$ is :

WB JEE 2023
39

Let f be derivable in [0, 1], then

WB JEE 2022
40

The value of $$\int\limits_0^{{\pi \over 2}} {{{{{(\cos x)}^{\sin x}}} \over {{{(\cos x)}^{\sin x}} + {{(\sin x)}^{\cos x}}}}dx} $$ is

WB JEE 2022
41

Let $$\mathop {\lim }\limits_{ \in \to 0 + } \int\limits_ \in ^x {{{bt\cos 4t - a\sin 4t} \over {{t^2}}}dt = {{a\sin 4x} \over x} - 1,\left( {0 < x < {\pi \over 4}} \right)} $$. Then a and b are given by

WB JEE 2022
42

Let $$f(x) = \int\limits_{\sin x}^{\cos x} {{e^{ - {t^2}}}dt} $$. Then $$f'\left( {{\pi \over 4}} \right)$$ equals

WB JEE 2022
43

If I is the greatest of $${I_1} = \int\limits_0^1 {{e^{ - x}}{{\cos }^2}x\,dx} $$, $${I_2} = \int\limits_0^1 {{e^{ - {x^2}}}{{\cos }^2}x\,dx} $$, $${I_3} = \int\limits_0^1 {{e^{ - {x^2}}}dx} $$, $${I_4} = \int\limits_0^1 {{e^{ - {x^2}/2}}dx} $$, then

WB JEE 2022
44
$$\int\limits_1^3 {{{\left| {x - 1} \right|} \over {\left| {x - 2} \right| + \left| {x - 3} \right|}}dx} $$ is equal to
WB JEE 2021
45
The value of the integral $$\int\limits_{ - {1 \over 2}}^{{1 \over 2}} {{{\left\{ {{{\left( {{{x + 1} \over {x - 1}}} \right)}^2} + {{\left( {{{x - 1} \over {x + 1}}} \right)}^2} - 2} \right\}}^{1/2}}} dx$$ is equal to
WB JEE 2021
46
If $$\int\limits_{{{\log }_e}2}^x {{{({e^x} - 1)}^{ - 1}}dx = {{\log }_e}{3 \over 2}} $$, then the value of x is
WB JEE 2021
47
The value of $$\int\limits_0^5 {\max \{ {x^2},6x - 8\} \,dx} $$ is
WB JEE 2021
48
Let f(x) be continuous periodic function with period T. Let $$I = \int\limits_a^{a + T} {f(x)\,dx} $$. Then
WB JEE 2021
49
If $$b = \int\limits_0^1 {{{{e^t}} \over {t + 1}}dt} $$, then $$\int\limits_{a - 1}^a {{{{e^{ - t}}} \over {t - a - 1}}} $$ is
WB JEE 2021
50
Let $$I = \int_{\pi /4}^{\pi /3} {{{\sin x} \over x}dx} $$. Then
WB JEE 2021
51
The value of

$$\sum\limits_{n = 1}^{10} {} \int\limits_{ - 2n - 1}^{ - 2n} {{{\sin }^{27}}} x\,dx + \sum\limits_{n = 1}^{10} {} \int\limits_{2n}^{2n + 1} {{{\sin }^{27}}} x\,dx$$ is equal to
WB JEE 2020
52
$$\int\limits_0^2 {[{x^2}]} \,dx$$ is equal to
WB JEE 2020
53
Let f, be a continuous function in [0, 1], then $$\mathop {\lim }\limits_{n \to \infty } \sum\limits_{j = 0}^n {{1 \over n}} f\left( {{j \over n}} \right)$$ is
WB JEE 2020
54
The value of the integration

$$\int\limits_{ - {\pi \over 4}}^{\pi /4} {\left( {\lambda |\sin x| + {{\mu \sin x} \over {1 + \cos x}} + \gamma } \right)} dx$$
WB JEE 2019
55
The value of $$\mathop {\lim }\limits_{x \to 0} {1 \over x}\left[ {\int\limits_y^a {{e^{{{\sin }^2}t}}dt - } \int\limits_{x + y}^a {{e^{{{\sin }^2}t}}dt} } \right]$$ is equal to
WB JEE 2019
56
The value of the integral $$\int\limits_{ - 1}^1 {\left\{ {{{{x^{2015}}} \over {{e^{|x|}}({x^2} + \cos x)}} + {1 \over {{e^{|x|}}}}} \right\}} dx$$ is equal to
WB JEE 2019
57
$$\mathop {\lim }\limits_{n \to \infty } {3 \over n}\left[ {1 + \sqrt {{n \over {n + 3}}} + \sqrt {{n \over {n + 6}}} + \sqrt {{n \over {n + 9}}} + ... + \sqrt {{n \over {n + 3(n - 1)}}} } \right]$$
WB JEE 2019
58
If $$M = \int\limits_0^{\pi /2} {{{\cos x} \over {x + 2}}dx} $$, $$N = \int\limits_0^{\pi /4} {{{\sin x\cos x} \over {{{(x + 1)}^2}}}dx} $$, then the value of M $$-$$ N is
WB JEE 2018
59
The value of the integral $$I = \int_{1/2014}^{2014} {{{{{\tan }^{ - 1}}x} \over x}} dx$$ is
WB JEE 2018
60
Let $$I = \int\limits_{\pi /4}^{\pi /3} {{{\sin x} \over x}} dx$$. Then
WB JEE 2018
61
The value of

$$I = \int_{\pi /2}^{5\pi /2} {{{{e^{{{\tan }^{ - 1}}(\sin x)}}} \over {{e^{{{\tan }^{ - 1}}(\sin x)}} + {e^{{{\tan }^{ - 1}}(\cos x)}}}}} dx$$, is
WB JEE 2018
62
The value of

$$\mathop {\lim }\limits_{n \to \infty } {1 \over n}\left\{ {{{\sec }^2}{\pi \over {4n}} + {{\sec }^2}{{2\pi } \over {4n}} + ... + {{\sec }^2}{{n\pi } \over {4n}}} \right\}$$ is
WB JEE 2018
63
Let $${I_1} = \int_0^n {[x]} \,dx$$ and $${I_2} = \int_0^n {\{ x\} } \,dx$$, where [x] and {x} are integral and fractional parts of x and n $$ \in $$ N $$-$$ {1}. Then I1 / I2 is equal to
WB JEE 2017
64
The value of $$\mathop {\lim }\limits_{n \to \infty } \left[ {{n \over {{n^2} + {1^2}}} + {n \over {{n^2} + {2^2}}} + ... + {1 \over {2n}}} \right]$$ is
WB JEE 2017
65
The value of the integral $$\int_0^1 {{e^{{x^2}}}} dx$$
WB JEE 2017
66
$$\int_0^{100} {{e^{x - [x]}}} dx$$ is equal to
WB JEE 2017
67
If $$f(x) = \int_{ - 1}^x {|t|} \,dt$$, then for any $$x \ge 0,\,f(x)$$ is equal to
WB JEE 2017
68
Let $$I = \int_0^{100\pi } {\sqrt {(1 - \cos 2x)} } \,dx$$, then
WB JEE 2017
69
$$\int\limits_0^1 {\log \left( {{1 \over x} - 1} \right)} dx$$ is equal to
WB JEE 2016
70
If [x] denotes the greatest integer less than or equal to x, then the value of the integral $$\int\limits_0^2 {{x^2}[x]\,dx} $$ equals
WB JEE 2016
MCQ (More than One Correct Answer)
1

If $f(x)=\int_0^{\sin ^2 x} \sin ^{-1} \sqrt{t} d t$ and $g(x)=\int_0^{\cos ^2 x} \cos ^{-1} \sqrt{t} d t$, then the value of $f(x)+g(x)$ is

WB JEE 2025
2

The value of $\int\limits_{-100}^{100} \frac{\left(x+x^3+x^5\right)}{\left(1+x^2+x^4+x^6\right)} d x$ is

WB JEE 2025
3

$$ \text { The points of extremum of } \int_\limits0^{x^2} \frac{t^2-5 t+4}{2+e^t} d t \text { are } $$

WB JEE 2024
4

Let f be a non-negative function defined on $$\left[ {0,{\pi \over 2}} \right]$$. If $$\int\limits_0^x {(f'(t) - \sin 2t)dt = \int\limits_x^0 {f(t)\tan t\,dt} } ,f(0) = 1$$ then $$\int\limits_0^{{\pi \over 2}} {f(x)dx} $$ is

WB JEE 2023
5

Which of the following statements are true?

WB JEE 2023
6
Whichever of the following is/are correct?
WB JEE 2021
7
Let $$f(x) = \left\{ {\matrix{ {0,} & {if} & { - 1 \le x \le 0} \cr {1,} & {if} & {x = 0} \cr {2,} & {if} & {0 < x \le 1} \cr } } \right.$$ and let $$F(x) = \int\limits_{ - 1}^x {f(t)dt} $$, $$-$$1 $$\le$$ x $$\le$$ 1, then
WB JEE 2021
8
Let $${I_n} = \int\limits_0^1 {{x^n}} {\tan ^{ - 1}}xdx$$. If $${a_n}{I_{n + 2}} + {b_n}{I_n} = {c_n}$$ for all n $$ \ge $$ 1, then
WB JEE 2019
9
Let $$I = \int\limits_0^I {{{{x^3}\cos 3x} \over {2 + {x^2}}}dx} $$, then
WB JEE 2018
10
Let f be a non-constant continuous function for all x $$ \ge $$ 0. Let f satisfy the relation f(x) f(a $$-$$ x) = 1 for some a $$ \in $$ R+. Then, $$I = \int_0^a {{{dx} \over {1 + f(x)}}} $$ is equal to
WB JEE 2017
11
If $$\phi (t) = \left\{ \matrix{ 1,\,for\,0 \le t < 1, \hfill \cr 0,\,otherwise \hfill \cr} \right.$$, then $$\int\limits_{ - 300}^{3000} {\left( {\sum\limits_{r' = 2014}^{2016} {\phi (t - r')\phi (t - 2016)} } \right)} \,dt$$ is
WB JEE 2016