Trigonometry
Inverse Trigonometric Functions
MCQ (Single Correct Answer)Subjective
1
WB JEE 2025
MCQ (More than One Correct Answer)
+2
-0

The value of $\int\limits_{-100}^{100} \frac{\left(x+x^3+x^5\right)}{\left(1+x^2+x^4+x^6\right)} d x$ is

A
100
B
1000
C
0
D
10
2
WB JEE 2024
MCQ (More than One Correct Answer)
+2
-0

$$ \text { The points of extremum of } \int_\limits0^{x^2} \frac{t^2-5 t+4}{2+e^t} d t \text { are } $$

A
$$\pm$$ 1
B
$$\pm$$ 2
C
$$\pm$$ 3
D
$$\pm$$ $$\sqrt2$$
3
WB JEE 2023
MCQ (More than One Correct Answer)
+2
-0

Let f be a non-negative function defined on $$\left[ {0,{\pi \over 2}} \right]$$. If $$\int\limits_0^x {(f'(t) - \sin 2t)dt = \int\limits_x^0 {f(t)\tan t\,dt} } ,f(0) = 1$$ then $$\int\limits_0^{{\pi \over 2}} {f(x)dx} $$ is

A
3
B
$$3 - {\pi \over 2}$$
C
$$3 + {\pi \over 2}$$
D
$${\pi \over 2}$$
4
WB JEE 2023
MCQ (More than One Correct Answer)
+2
-0

Which of the following statements are true?

A
If f(x) be continuous and periodic with periodicity T, then $$I = \int\limits_a^{a + T} {f(x)} ~dx$$ depend on 'a'.
B
If f(x) be continuous and periodic with periodicity T, then $$I = \int\limits_a^{a + T} {f(x)} ~dx$$ does not depend on 'a'.
C
Let $$\mathrm{f(x)} = \left\{ \matrix{ 1,\,\,\,\mathrm{if\,x\,is\,rational} \hfill \cr 0,\,\,\mathrm{if\,x\,is\,irrational} \hfill \cr} \right.$$, then f is periodic of the periodicity T only if T is rational.
D
f defined in (C) is periodic for all T.
WB JEE Subjects