Trigonometry
Inverse Trigonometric Functions
MCQ (Single Correct Answer)Subjective
1
WB JEE 2025
MCQ (Single Correct Answer)
+2
-0.5

Let $f(x)=\max \{x+|x|, x-[x]\}$, where $[x]$ stands for the greatest integer not greater than $x$. Then $\int\limits_{-3}^3 f(x) d x$ has the value

A
$\frac{51}{2}$
B
$\frac{21}{2}$
C
1
D
0
2
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25

All values of a for which the inequality $$\frac{1}{\sqrt{a}} \int_\limits1^a\left(\frac{3}{2} \sqrt{x}+1-\frac{1}{\sqrt{x}}\right) \mathrm{d} x<4$$ is satisfied, lie in the interval

A
(1, 2)
B
(0, 3)
C
(0, 4)
D
(1, 4)
3
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25

For any integer $$\mathrm{n}, \int_\limits0^\pi \mathrm{e}^{\cos ^2 x} \cdot \cos ^3(2 n+1) x \mathrm{~d} x$$ has the value :

A
$$\pi$$
B
1
C
0
D
$$\frac{3 \pi}{2}$$
4
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25

If $$\mathrm{f}(x)=\frac{\mathrm{e}^x}{1+\mathrm{e}^x}, \mathrm{I}_1=\int_\limits{\mathrm{f}(-\mathrm{a})}^{\mathrm{f}(\mathrm{a})} x \mathrm{~g}(x(1-x)) \mathrm{d} x$$ and $$\mathrm{I}_2=\int_\limits{\mathrm{f}(-\mathrm{a})}^{\mathrm{f}(\mathrm{a})} \mathrm{g}(x(1-x)) \mathrm{d} x$$, then the value of $$\frac{I_2}{I_1}$$ is

A
$$-1$$
B
$$-3$$
C
2
D
1
WB JEE Subjects