Trigonometry
Inverse Trigonometric Functions
MCQ (Single Correct Answer)Subjective
1
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25

If the matrix $\left(\begin{array}{ccc}0 & a & a \\ 2 b & b & -b \\ c & -c & c\end{array}\right)$ is orthogonal, then the values of $a, b, c$ are

A
$a= \pm \frac{1}{\sqrt{3}}, b= \pm \frac{1}{\sqrt{6}}, c= \pm \frac{1}{\sqrt{2}}$
B
$a= \pm \frac{1}{\sqrt{2}}, b= \pm \frac{1}{\sqrt{6}}, c= \pm \frac{1}{\sqrt{3}}$
C
$a=-\frac{1}{\sqrt{2}}, b=-\frac{1}{\sqrt{6}}, c=-\frac{1}{\sqrt{3}}$
D
$a=\frac{1}{\sqrt{3}}, b=\frac{1}{\sqrt{6}}, c=\frac{1}{\sqrt{3}}$
2
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25

Let $A=\left[\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 5 \alpha \\ 0 & 0 & 5\end{array}\right]$. If $|A|^2=25$, then $|\alpha|$ equals to

A
5$^2$
B
1
C
$\frac{1}{5}$
D
5
3
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25

An $n \times n$ matrix is formed using 0, 1 and $-$1 as its elements. The number of such matrices which are skew symmetric is

A
$\frac{n(n-1)}{2}$
B
$(n-1)^2$
C
$2^{n(n-1) / 2}$
D
$3^{n(n-1) / 2}$
4
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25

Suppose $\alpha, \beta, \gamma$ are the roots of the equation $x^3+q x+r=0($ with $r \neq 0)$ and they are in A.P. Then the rank of the matrix $\left(\begin{array}{lll}\alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta\end{array}\right)$ is

A
3
B
2
C
0
D
1
WB JEE Subjects