Trigonometry
Inverse Trigonometric Functions
MCQ (Single Correct Answer)Subjective
1
WB JEE 2012
MCQ (Single Correct Answer)
+1
-0.33
$$P = \left[ {\matrix{ 1 & 2 & 1 \cr 1 & 3 & 1 \cr } } \right],Q = P{P^T}$$, then the value of determinant of Q is
A
2
B
$$-$$2
C
1
D
0
2
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25

If the matrix $\left(\begin{array}{ccc}0 & a & a \\ 2 b & b & -b \\ c & -c & c\end{array}\right)$ is orthogonal, then the values of $a, b, c$ are

A
$a= \pm \frac{1}{\sqrt{3}}, b= \pm \frac{1}{\sqrt{6}}, c= \pm \frac{1}{\sqrt{2}}$
B
$a= \pm \frac{1}{\sqrt{2}}, b= \pm \frac{1}{\sqrt{6}}, c= \pm \frac{1}{\sqrt{3}}$
C
$a=-\frac{1}{\sqrt{2}}, b=-\frac{1}{\sqrt{6}}, c=-\frac{1}{\sqrt{3}}$
D
$a=\frac{1}{\sqrt{3}}, b=\frac{1}{\sqrt{6}}, c=\frac{1}{\sqrt{3}}$
3
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25

Let $A=\left[\begin{array}{ccc}5 & 5 \alpha & \alpha \\ 0 & \alpha & 5 \alpha \\ 0 & 0 & 5\end{array}\right]$. If $|A|^2=25$, then $|\alpha|$ equals to

A
5$^2$
B
1
C
$\frac{1}{5}$
D
5
4
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25

An $n \times n$ matrix is formed using 0, 1 and $-$1 as its elements. The number of such matrices which are skew symmetric is

A
$\frac{n(n-1)}{2}$
B
$(n-1)^2$
C
$2^{n(n-1) / 2}$
D
$3^{n(n-1) / 2}$
WB JEE Subjects