Trigonometry
Inverse Trigonometric Functions
MCQ (Single Correct Answer)Subjective
1
WB JEE 2021
MCQ (Single Correct Answer)
+1
-0.25
For $$y = {\sin ^{ - 1}}\left\{ {{{5x + 12\sqrt {1 - {x^2}} } \over {13}}} \right\};\left| x \right| \le 1$$, if $$a(1 - {x^2}){y_2} + bx{y_1} = 0$$ then (a, b) =
A
(2, 1)
B
(1, $$-$$1)
C
($$-$$1, 1)
D
(1, 2)
2
WB JEE 2018
MCQ (Single Correct Answer)
+1
-0.25
If $$0 \le A \le {\pi \over 4}$$, then $${\tan ^{ - 1}}\left( {{1 \over 2}\tan 2A} \right) + {\tan ^{ - 1}}(\cot A) + {\tan ^{ - 1}}({\cot ^3}A)$$
A
$${\pi \over 4}$$
B
$$\pi$$
C
0
D
$${\pi \over 2}$$
3
WB JEE 2017
MCQ (Single Correct Answer)
+1
-0.25
The possible values of x, which satisfy the trigonometric equation

$${\tan ^{ - 1}}\left( {{{x - 1} \over {x - 2}}} \right) + {\tan ^{ - 1}}\left( {{{x + 1} \over {x + 2}}} \right) = {\pi \over 4}$$ are
A
$$ \pm {1 \over {\sqrt 2 }}$$
B
$$ \pm $$ $${\sqrt 2 }$$
C
$$ \pm $$ $${1 \over 2}$$
D
$$ \pm $$ 2
4
WB JEE 2016
MCQ (Single Correct Answer)
+1
-0.25
If $$f(x) = {\tan ^{ - 1}}\left[ {{{\log \left( {{e \over {{x^2}}}} \right)} \over {\log (e{x^2})}}} \right] + {\tan ^{ - 1}}\left[ {{{3 + 2\log x} \over {1 - 6\log x}}} \right]$$, then the value of f''(x) is equal to
A
x2
B
x
C
1
D
0
WB JEE Subjects