Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2014 Set 3
MCQ (Single Correct Answer)
+1
-0.3
Which one of the following statements is TRUE about every $$n\,\, \times \,n$$ matrix with only real eigen values?
A
If the trace of the matrix is positive and the determinant of the negative, at least one of its eigen values is negative.
B
If the trace of the matrix is positive, all its eigen values are positive.
C
If the determinanant of the matrix is positive, all its eigen values are positive.
D
If the product of the trace and determination of the matrix is positive, all its eigen values are positive.
2
GATE CSE 2014 Set 3
Numerical
+1
-0
If $${V_1}$$ and $${V_2}$$ are 4-dimensional subspaces of a 6-dimensional vector space V, then the smallest possible dimension of $${V_1}\, \cap \,\,{V_2}$$ is _________________.
Your input ____
3
GATE CSE 2014 Set 2
Numerical
+1
-0
If the matrix A is such that $$$A = \left[ {\matrix{ 2 \cr { - 4} \cr 7 \cr } } \right]\,\,\left[ {\matrix{ 1 & 9 & 5 \cr } } \right]$$$ then the determinant of A is equal to _________.
Your input ____
4
GATE CSE 2014 Set 1
Numerical
+1
-0
The value of the dot product of the eigenvectors corresponding to any pair of different eigen values of a 4-by-4 symmetric positive definite matrix is ____________.
Your input ____
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization