Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 1995
MCQ (Single Correct Answer)
+1
-0.3
The rank of the following (n + 1) x (n + 1) matrix, where a is a real number is $$$\left[ {\matrix{ 1 & a & {{a^2}} & . & . & . & {{a^n}} \cr 1 & a & {{a^2}} & . & . & . & {{a^n}} \cr . & . & . & . & . & . & . \cr . & . & . & . & . & . & . \cr . & . & . & . & . & . & . \cr 1 & a & {{a^2}} & . & . & . & {{a^n}} \cr } } \right]$$$
A
1
B
2
C
n
D
Depends on the value of a
2
GATE CSE 1995
MCQ (Single Correct Answer)
+1
-0.3
The rank of the following (n + 1) x (n + 1) matrix, where a is a real number is $$$\left[ {\matrix{ 1 & a & {{a^2}} & . & . & . & {{a^n}} \cr 1 & a & {{a^2}} & . & . & . & {{a^n}} \cr . & . & . & . & . & . & . \cr . & . & . & . & . & . & . \cr . & . & . & . & . & . & . \cr 1 & a & {{a^2}} & . & . & . & {{a^n}} \cr } } \right]$$$
A
1
B
2
C
n
D
Depends on the value of a
3
GATE CSE 1994
Fill in the Blanks
+1
-0
The inverse of the matrix $$\left[ {\matrix{ 1 & 0 & 1 \cr { - 1} & 1 & 1 \cr 0 & 1 & 0 \cr } } \right]$$ is
4
GATE CSE 1994
MCQ (Single Correct Answer)
+1
-0.3
The rank of the matrix $$\left[ {\matrix{ 0 & 0 & { - 3} \cr 9 & 3 & 5 \cr 3 & 1 & 1 \cr } } \right]$$ is
A
$$0$$
B
$$1$$
C
$$2$$
D
$$3$$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization