Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2014 Set 2
Numerical
+1
-0
If the matrix A is such that $$$A = \left[ {\matrix{ 2 \cr { - 4} \cr 7 \cr } } \right]\,\,\left[ {\matrix{ 1 & 9 & 5 \cr } } \right]$$$ then the determinant of A is equal to _________.
Your input ____
2
GATE CSE 2014 Set 1
Numerical
+1
-0
The value of the dot product of the eigenvectors corresponding to any pair of different eigen values of a 4-by-4 symmetric positive definite matrix is ____________.
Your input ____
3
GATE CSE 2014 Set 1
Numerical
+1
-0
Consider the following system of equations:
3x + 2y = 1
4x + 7z = 1
x + y + z =3
x - 2y + 7z = 0
The number of solutions for this system is ______________________
Your input ____
4
GATE CSE 2013
MCQ (Single Correct Answer)
+1
-0.3
Which of the following does not equal
$$\left| {\matrix{ 1 & x & {{x^2}} \cr 1 & y & {{y^2}} \cr 1 & z & {{z^2}} \cr } } \right|?$$
A
$$\left| {\matrix{ 1 & {x\left( {x + 1} \right)} & {x + 1} \cr 1 & {y\left( {y + 1} \right)} & {y + 1} \cr 1 & {z\left( {z + 1} \right)} & {z + 1} \cr } } \right|$$
B
$$\left| {\matrix{ 1 & {x + 1} & {{x^2} + 1} \cr 1 & {y + 1} & {{y^2} + 1} \cr 1 & {z + 1} & {{z^2} + 1} \cr } } \right|$$
C
$$\left| {\matrix{ 0 & {x - y} & {{x^2} - {y^2}} \cr 0 & {y - z} & {{x^2} - {z^2}} \cr 1 & z & {{z^2}} \cr } } \right|$$
D
$$\left| {\matrix{ 2 & {x + y} & {{x^2} + {y^2}} \cr 2 & {y + z} & {{x^2} + {z^2}} \cr 1 & z & {{z^2}} \cr } } \right|$$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization