Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2016 Set 1
Numerical
+1
-0
Two eigenvalues of a $$3 \times 3$$ real matrix $$P$$ are $$\left( {2 + \sqrt { - 1} } \right)$$ and $$3.$$ The determinant of $$P$$ is _______.
Your input ____
2
GATE CSE 2016 Set 1
MCQ (Single Correct Answer)
+1
-0.3
Let $${a_n}$$ be the number of $$n$$-bit strings that do NOT contain two consecutive $$1s.$$ Which one of the following is the recurrence relation for $${a_n}$$?
A
$${a_n} = {a_{n - 1}} + 2{a_{n - 2}}$$
B
$${a_n} = {a_{n - 1}} + {a_{n - 2}}$$
C
$${a_n} = 2{a_{n - 1}} + {a_{n - 2}}$$
D
$${a_n} = 2{a_{n - 1}} + 2{a_{n - 2}}$$
3
GATE CSE 2015 Set 3
MCQ (Single Correct Answer)
+1
-0.3
In the given matrix $$\left[ {\matrix{ 1 & { - 1} & 2 \cr 0 & 1 & 0 \cr 1 & 2 & 1 \cr } } \right],$$ one of the eigenvalues is $$1.$$ The eigen vectors corresponding to the eigen value $$1$$ are
A
$$\left\{ {\alpha \left( {4,2,1} \right)\left| {\alpha \ne 0,\alpha \in \left. R \right\}} \right.} \right.$$
B
$$\left\{ {\alpha \left( { - 4,2,1} \right)\left| {\alpha \ne 0,\alpha \in \left. R \right\}} \right.} \right.$$
C
$$\left\{ {\alpha \left( {\sqrt 2 ,0,1} \right)\left| {\alpha \ne 0,\alpha \in \left. R \right\}} \right.} \right.$$
D
$$\left\{ {\alpha \left( { - \sqrt 2 ,0,1} \right)\left| {\alpha \ne 0,\alpha \in \left. R \right\}} \right.} \right.$$
4
GATE CSE 2015 Set 2
Numerical
+1
-0
The number of divisors of $$2100$$ is ___________.
Your input ____
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization