Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2004
MCQ (Single Correct Answer)
+1
-0.3
The number of different $$n \times n$$ symmetric matrices with each elements being either $$0$$ or $$1$$ is
A
$${2^n}$$
B
$${2^{{n^2}}}$$
C
$${2^{{{{n^2} + n} \over 2}}}$$
D
$${2^{{{{n^2} - n} \over 2}}}$$
2
GATE CSE 2004
MCQ (Single Correct Answer)
+1
-0.3
What values of x, y and z satisfy the following system of linear equations? $$$\left[ {\matrix{ 1 & 2 & 3 \cr 1 & 3 & 4 \cr 2 & 3 & 3 \cr } } \right]\,\,\left[ {\matrix{ x \cr y \cr z \cr } } \right]\,\, = \,\left[ {\matrix{ 6 \cr 8 \cr {12} \cr } } \right]$$$
A
x = 6, y = 3, z = 2
B
x = 12, y = 3, z = - 4
C
x = 6, y = 6, z = - 4
D
x = 12, y = - 3, z = 0
3
GATE CSE 2003
MCQ (Single Correct Answer)
+1
-0.3
$$A$$ system of equations represented by $$AX=0$$ where $$X$$ is a column vector of unknown and $$A$$ is a square matrix containing coefficients has a non-trival solution when $$A$$ is.
A
non-singular
B
singular
C
symmetric
D
Hermitian
4
GATE CSE 2002
MCQ (Single Correct Answer)
+1
-0.3
The rank of the matrix$$\left[ {\matrix{ 1 & 1 \cr 0 & 0 \cr } } \right]\,\,is$$
A
4
B
2
C
1
D
0
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization