Engineering Mathematics
Linear Algebra
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Probability and Statistics
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
1
GATE ME 2009
MCQ (Single Correct Answer)
+1
-0.3
The inverse Laplace transform of $${1 \over {\left( {{s^2} + s} \right)}}$$ is
A
$$1 + {e^t}$$
B
$$1 - {e^t}$$
C
$$1 - {e^{ - t}}$$
D
$$1 + {e^{ - t}}$$
2
GATE ME 2007
MCQ (Single Correct Answer)
+1
-0.3
If $$F(s)$$ is the Laplace transform of the function $$f(t)$$ then Laplace transform of $$\int\limits_0^t {f\left( x \right)dx} $$ is
A
$${1 \over s}F\left( s \right)$$
B
$${1 \over s}F\left( s \right) - f\left( 0 \right)$$
C
$$s\,F\left( s \right) - f\left( 0 \right)$$
D
$$\int {F\left( s \right)ds} $$
3
GATE ME 1999
MCQ (Single Correct Answer)
+1
-0.3
Laplace transform of $${\left( {a + bt} \right)^2}$$ where $$'a'$$ and $$'b'$$ are constants is given by:
A
$${\left( {a + bs} \right)^2}$$
B
$$1/{\left( {a + bs} \right)^2}$$
C
$$\left( {{a^2}/s} \right) + \left( {2ab/{s^2}} \right) + \left( {2{b^2}/{s^3}} \right)$$
D
$$\left( {{a^2}/s} \right) + \left( {2ab/{s^2}} \right) + \left( {{b^2}/{s^3}} \right)$$
4
GATE ME 1997
Subjective
+1
-0
Solve the initial value problem
$${{{d^2}y} \over {d{x^2}}} - 4{{dy} \over {dx}} + 3y = 0$$ with $$y=3$$ and
$${{dy} \over {dx}} = 7$$ at $$x=0$$ using the laplace transform technique?
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude