Engineering Mathematics
Linear Algebra
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Probability and Statistics
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
1
GATE ME 2015 Set 3
MCQ (Single Correct Answer)
+1
-0.3
Laplace transform of the function $$f(t)$$ is given by $$f\left( s \right) = L\left\{ {f\left( t \right)} \right\} = \int\limits_0^\infty {f\left( t \right){e^{ - st}}\,dt.} $$

Laplace transform of the function shown below is given by.

GATE ME 2015 Set 3 Engineering Mathematics - Transform Theory Question 5 English
A
$${{1 - {e^{ - 2s}}} \over s}$$
B
$${{1 - {e^{ - s}}} \over s}$$
C
$${{2 - 2{e^{ - s}}} \over s}$$
D
$${{1 - 2{e^{ - s}}} \over s}$$
2
GATE ME 2014 Set 4
MCQ (Single Correct Answer)
+1
-0.3
Laplace transform of $$\cos \,\left( {\omega t} \right)$$ is $${s \over {{s^2} + {\omega ^2}.}}$$. The Laplace transform of $${e^{ - 2t}}\,\cos \left( {4t} \right)$$ is
A
$${{s - 2} \over {{{\left( {s - 2} \right)}^2} + 16}}$$
B
$${{s + 2} \over {{{\left( {s - 2} \right)}^2} + 16}}$$
C
$${{s - 2} \over {{{\left( {s + 2} \right)}^2} + 16}}$$
D
$${{s + 2} \over {{{\left( {s + 2} \right)}^2} + 16}}$$
3
GATE ME 2013
MCQ (Single Correct Answer)
+1
-0.3
The function $$f(t)$$ satisfies the differential equation $${{{d^2}f} \over {d{t^2}}} + f = 0$$ and the auxiliary conditions, $$f\left( 0 \right) = 0,\,{{df} \over {dt}}\left( 0 \right) = 4.$$ The laplace transform of $$f(t)$$ is given by
A
$${2 \over {s + 1}}$$
B
$${4 \over {s + 1}}$$
C
$${4 \over {{s^2} + 1}}$$
D
$${2 \over {{s^4} + 1}}$$
4
GATE ME 2012
MCQ (Single Correct Answer)
+1
-0.3
The inverse Laplace transform of the function $$F\left( s \right) = {1 \over {s\left( {s + 1} \right)}}$$ is given by
A
$$f\left( t \right) = \sin \,t$$
B
$$f\left( t \right) = {e^{ - t}}\sin \,t$$
C
$$f\left( t \right) = {e^{ - t}}$$
D
$$f\left( t \right) = 1 - {e^{ - t}}$$
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude