Engineering Mathematics
Linear Algebra
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Probability and Statistics
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
1
GATE ME 2013
MCQ (Single Correct Answer)
+1
-0.3
The function $$f(t)$$ satisfies the differential equation $${{{d^2}f} \over {d{t^2}}} + f = 0$$ and the auxiliary conditions, $$f\left( 0 \right) = 0,\,{{df} \over {dt}}\left( 0 \right) = 4.$$ The laplace transform of $$f(t)$$ is given by
A
$${2 \over {s + 1}}$$
B
$${4 \over {s + 1}}$$
C
$${4 \over {{s^2} + 1}}$$
D
$${2 \over {{s^4} + 1}}$$
2
GATE ME 2012
MCQ (Single Correct Answer)
+1
-0.3
The inverse Laplace transform of the function $$F\left( s \right) = {1 \over {s\left( {s + 1} \right)}}$$ is given by
A
$$f\left( t \right) = \sin \,t$$
B
$$f\left( t \right) = {e^{ - t}}\sin \,t$$
C
$$f\left( t \right) = {e^{ - t}}$$
D
$$f\left( t \right) = 1 - {e^{ - t}}$$
3
GATE ME 2010
MCQ (Single Correct Answer)
+1
-0.3
The Laplace transform of $$f\left( t \right)$$ is $${1 \over {{s^2}\left( {s + 1} \right)}}.$$
The function
A
$$t - 1 + {e^{ - t}}$$
B
$$t + 1 + {e^{ - t}}$$
C
$$ - 1 + {e^{ - t}}$$
D
$$2t + {e^t}$$
4
GATE ME 2009
MCQ (Single Correct Answer)
+1
-0.3
The inverse Laplace transform of $${1 \over {\left( {{s^2} + s} \right)}}$$ is
A
$$1 + {e^t}$$
B
$$1 - {e^t}$$
C
$$1 - {e^{ - t}}$$
D
$$1 + {e^{ - t}}$$
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude