Engineering Mathematics
Linear Algebra
Marks 1Marks 2
Vector Calculus
Marks 1Marks 2
Probability and Statistics
Marks 1Marks 2
Differential Equations
Marks 1Marks 2
Complex Variable
Marks 1Marks 2
Transform Theory
Marks 1Marks 2
Numerical Methods
Marks 1Marks 2
1
GATE ME 2007
MCQ (Single Correct Answer)
+1
-0.3
If $$F(s)$$ is the Laplace transform of the function $$f(t)$$ then Laplace transform of $$\int\limits_0^t {f\left( x \right)dx} $$ is
A
$${1 \over s}F\left( s \right)$$
B
$${1 \over s}F\left( s \right) - f\left( 0 \right)$$
C
$$s\,F\left( s \right) - f\left( 0 \right)$$
D
$$\int {F\left( s \right)ds} $$
2
GATE ME 1999
MCQ (Single Correct Answer)
+1
-0.3
Laplace transform of $${\left( {a + bt} \right)^2}$$ where $$'a'$$ and $$'b'$$ are constants is given by:
A
$${\left( {a + bs} \right)^2}$$
B
$$1/{\left( {a + bs} \right)^2}$$
C
$$\left( {{a^2}/s} \right) + \left( {2ab/{s^2}} \right) + \left( {2{b^2}/{s^3}} \right)$$
D
$$\left( {{a^2}/s} \right) + \left( {2ab/{s^2}} \right) + \left( {{b^2}/{s^3}} \right)$$
3
GATE ME 1997
Subjective
+1
-0
Solve the initial value problem
$${{{d^2}y} \over {d{x^2}}} - 4{{dy} \over {dx}} + 3y = 0$$ with $$y=3$$ and
$${{dy} \over {dx}} = 7$$ at $$x=0$$ using the laplace transform technique?
4
GATE ME 1994
Fill in the Blanks
+1
-0
If $$f(t)$$ is a finite and continuous Function for $$t \ge 0$$ the laplace transformation is given by
$$F = \int\limits_0^\infty {{e^{ - st}}\,\,f\left( t \right)dt,} $$ then for $$f(t)=cos$$ $$h$$ $$mt,$$ the laplace transformation is ___________.
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude