Trigonometry
Inverse Trigonometric Functions
MCQ (Single Correct Answer)Subjective
1
WB JEE 2016
MCQ (Single Correct Answer)
+1
-0.25
The number of ways in which the letters of the word ARRANGE can be permuted such that the R's occur together, is
A
$${{7!} \over {2!2!}}$$
B
$${{7!} \over {2!}}$$
C
$${{6!} \over {2!}}$$
D
5! $$ \times $$ 2!
2
WB JEE 2016
MCQ (Single Correct Answer)
+1
-0.25
$$1 + {}^n{C_1}\cos \theta + {}^n{C_2}\cos 2\theta + ... + {}^n{C_n}\cos n\theta $$ equals
A
$${\left( {2\cos {\theta \over 2}} \right)^n}\cos {{n\theta } \over 2}$$
B
$$2{\cos ^2}{{n\theta } \over 2}$$
C
$$2{\cos ^{2n}}{\theta \over 2}$$
D
$${\left( {2{{\cos }^2}{\theta \over 2}} \right)^n}$$
3
WB JEE 2016
MCQ (Single Correct Answer)
+1
-0.25
Let $$Q = \left[ {\matrix{ {\cos {\pi \over 4}} & { - \sin {\pi \over 4}} \cr {\sin {\pi \over 4}} & {\cos {\pi \over 4}} \cr } } \right]$$ and $$x = \left[ {\matrix{ {{1 \over {\sqrt 2 }}} \cr {{1 \over {\sqrt 2 }}} \cr } } \right]$$, then Q3x is equal to
A
$$\left( {\matrix{ 0 \cr 1 \cr } } \right)$$
B
$$\left( {\matrix{ { - {1 \over {\sqrt 2 }}} \cr {{1 \over {\sqrt 2 }}} \cr } } \right)$$
C
$$\left( {\matrix{ { - 1} \cr 0 \cr } } \right)$$
D
$$\left( {\matrix{ { - {1 \over {\sqrt 2 }}} \cr { - {1 \over {\sqrt 2 }}} \cr } } \right)$$
4
WB JEE 2016
MCQ (Single Correct Answer)
+1
-0.25
If the function f : R $$ \to $$ R is defined by f(x) = (x2 + 1)35, $$\forall $$ x$$ \in $$R, then f is
A
one-one but not onto
B
onto but not one-one
C
neither one-one nor onto
D
both one-one and onto
WB JEE Subjects