Trigonometry
Inverse Trigonometric Functions
MCQ (Single Correct Answer)Subjective
1
WB JEE 2011
MCQ (Single Correct Answer)
+1
-0.25

The differential equation of y = aebx (a & b are parameters) is

A
$$y{y_1} = y_2^2$$
B
$$y{y_2} = y_1^2$$
C
$$yy_1^2 = {y_2}$$
D
$$yy_2^2 = {y_1}$$
2
WB JEE 2012
MCQ (Single Correct Answer)
+1
-0.33
The general solution of the differential equation $${{dy} \over {dx}} = {{x + y + 1} \over {2x + 2y + 1}}$$ is
A
$${\log _e}|3x + 3y + 2| + 3x + 6y = C$$
B
$${\log _e}|3x + 3y + 2| - 3x + 6y = C$$
C
$${\log _e}|3x + 3y + 2| - 3x - 6y = C$$
D
$${\log _e}|3x + 3y + 2| + 3x - 6y = C$$
3
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25

If $x=\int\limits_0^y \frac{1}{\sqrt{1+9 t^2}} d t$ and $\frac{d^2 y}{d x^2}=a y$, then $a$ is equal to

A
3
B
6
C
9
D
1
4
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25

Let $$\mathrm{f}$$ be a differential function with $$\lim _\limits{x \rightarrow \infty} \mathrm{f}(x)=0$$. If $$\mathrm{y}^{\prime}+\mathrm{yf}^{\prime}(x)-\mathrm{f}(x) \mathrm{f}^{\prime}(x)=0$$, $$\lim _\limits{x \rightarrow \infty} y(x)=0$$ then

A
$$\mathrm{y}+1=\mathrm{e}^{\mathrm{f}(x)}+\mathrm{f}(x)$$
B
$$\mathrm{y}+1=\mathrm{e}^{-\mathrm{f}(x)}+\mathrm{f}(x)$$
C
$$\mathrm{y}+2=\mathrm{e}^{-\mathrm{f}(\mathrm{x})}+\mathrm{f}(x)$$
D
$$\mathrm{y}-1=\mathrm{e}^{-\mathrm{f}(x)}+\mathrm{f}(x)$$
WB JEE Subjects