Trigonometry
Inverse Trigonometric Functions
MCQ (Single Correct Answer)Subjective
1
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25

Let $\vec{a}, \vec{b}, \vec{c}$ be unit vectors. Suppose $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}=0$ and the angle between $\vec{b}$ and $\vec{c}$ is $\frac{\pi}{6}$. Then $\vec{a}$ is

A
$\vec{b} \times \vec{c}$
B
$\vec{c} \times \vec{b}$
C
$\vec{b}+\vec{c}$
D
$\pm 2(\vec{b} \times \vec{c})$
2
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25

A unit vector in XY-plane making an angle $$45^{\circ}$$ with $$\hat{i}+\hat{j}$$ and an angle $$60^{\circ}$$ with $$3 \hat{i}-4 \hat{j}$$ is

A
$$ \frac{13}{14} \hat{i}+\frac{1}{14} \hat{j} $$
B
$$ \frac{1}{14} \hat{i}+\frac{13}{14} \hat{j} $$
C
$$ \frac{13}{14} \hat{\mathrm{i}}-\frac{1}{14} \hat{\mathrm{j}} $$
D
$$ \frac{1}{14} \hat{i}-\frac{13}{14} \hat{j} $$
3
WB JEE 2023
MCQ (Single Correct Answer)
+1
-0.25

The value of 'a' for which the scalar triple product formed by the vectors $$\overrightarrow \alpha = \widehat i + a\widehat j + \widehat k,\overrightarrow \beta = \widehat j + a\widehat k$$ and $$\overrightarrow \gamma = a\widehat i + \widehat k$$ is maximum, is

A
3
B
$$-$$3
C
$$ - {1 \over {\sqrt 3 }}$$
D
$${1 \over {\sqrt 3 }}$$
4
WB JEE 2023
MCQ (Single Correct Answer)
+2
-0.5

If the volume of the parallelopiped with $$\overrightarrow a \times \overrightarrow b ,\overrightarrow b \times \overrightarrow c $$ and $$\overrightarrow c \times \overrightarrow a $$ as conterminous edges is 9 cu. units, then the volume of the parallelopiped with $$(\overrightarrow a \times \overrightarrow b ) \times (\overrightarrow b \times \overrightarrow c ),(\overrightarrow b \times \overrightarrow c ) \times (\overrightarrow c \times \overrightarrow a )$$, and $$(\overrightarrow c \times \overrightarrow a ) \times (\overrightarrow a \times \overrightarrow b )$$ as conterminous edges is

A
9 cu. units
B
729 cu. units
C
81 cu. units
D
243 cu. units
WB JEE Subjects