Trigonometry
Inverse Trigonometric Functions
MCQ (Single Correct Answer)Subjective
1
WB JEE 2025
MCQ (Single Correct Answer)
+2
-0.5

Let $u+v+w=3, u, v, w \in \mathbb{R}$ and $f(x)=u x^2+v x+w$ be such that $f(x+y)=f(x)+f(y)+x y$, $\forall x, y \in \mathbb{R}$. Then $f(1)$ is equal to

A
$\frac{5}{2}$
B
$\frac{1}{2}$
C
$\frac{1}{\sqrt{2}}$
D
$3$
2
WB JEE 2025
MCQ (Single Correct Answer)
+2
-0.5

If $f(x)$ and $g(x)$ are two polynomials such that $\phi(x)=f\left(x^3\right)+x g\left(x^3\right)$ is divisible by $x^2+x+1$, then

A
$\phi(x)$ is divisible by $(x-1)$
B
none of $f(x)$ and $g(x)$ is divisible by $(x-1)$
C
$g(x)$ is divisible by $(x-1)$ but $f(x)$ is not divisible by $(x-1)$
D
$f(x)$ io divisible hv $(x-1)$ but $g(x)$ is not divisible by $(x-1)$
3
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25

Let $$\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$$ be a function defined by $$\mathrm{f}(x)=\frac{\mathrm{e}^{|x|}-\mathrm{e}^{-x}}{\mathrm{e}^x+\mathrm{e}^{-x}}$$, then

A
$$f$$ is both one-one and onto
B
$$f$$ is one-one but not onto
C
$$f$$ is onto but not one-one
D
$$f$$ is neither one-one nor onto
4
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25

For every real number $$x \neq-1$$, let $$\mathrm{f}(x)=\frac{x}{x+1}$$. Write $$\mathrm{f}_1(x)=\mathrm{f}(x)$$ & for $$\mathrm{n} \geq 2, \mathrm{f}_{\mathrm{n}}(x)=\mathrm{f}\left(\mathrm{f}_{\mathrm{n}-1}(x)\right)$$. Then $$\mathrm{f}_1(-2) \cdot \mathrm{f}_2(-2) \ldots . . \mathrm{f}_{\mathrm{n}}(-2)$$ must be

A
$$\frac{2^{\mathrm{n}}}{1.3 .5 \ldots \ldots(2 \mathrm{n}-1)}$$
B
$$1$$
C
$$\frac{1}{2}\binom{2 n}{n}$$
D
$$\binom{2 \mathrm{n}}{\mathrm{n}}$$
WB JEE Subjects