Trigonometry
Inverse Trigonometric Functions
MCQ (Single Correct Answer)Subjective
1
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25

Let $\omega(\neq 1)$ be a cubic root of unity. Then the minimum value of the set $\left\{\mid a+b \omega+c \omega^2\right\}^2 ; a, b, c$ are distinct non-zero integers} equals

A
15
B
5
C
3
D
4
2
WB JEE 2025
MCQ (Single Correct Answer)
+2
-0.5

If $\left|Z_1\right|=\left|Z_2\right|=\left|Z_3\right|=1$ and $Z_1+Z_2+Z_3=0$, then the area of the triangle whose vertices are $Z_1, Z_2, Z_3$ is

A
$\frac{3 \sqrt{3}}{4}$
B
$\frac{\sqrt{3}}{4}$
C
1
D
2
3
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25

If $$z_1$$ and $$z_2$$ be two roots of the equation $$z^2+a z+b=0, a^2<4 b$$, then the origin, $$\mathrm{z}_1$$ and $$\mathrm{z}_2$$ form an equilateral triangle if

A
$$\mathrm{a}^2=3 \mathrm{b}^2$$
B
$$\mathrm{a^2=3 b}$$
C
$$\mathrm{b}^2=3 \mathrm{a}$$
D
$$\mathrm{b}^2=3 \mathrm{a}^2$$
4
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25

If $$\cos \theta+i \sin \theta, \theta \in \mathbb{R}$$, is a root of the equation

$$a_0 x^n+a_1 x^{n-1}+\ldots .+a_{n-1} x+a_n=0, a_0, a_1, \ldots . a_n \in \mathbb{R}, a_0 \neq 0,$$

then the value of $$a_1 \sin \theta+a_2 \sin 2 \theta+\ldots .+a_n \sin n \theta$$ is

A
2n
B
n
C
0
D
n + 1
WB JEE Subjects