Trigonometry
Inverse Trigonometric Functions
MCQ (Single Correct Answer)Subjective
1
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25

Let $f(x)$ be a second degree polynomial. If $f(1)=f(-1)$ and $p, q, r$ are in A.P., then $f^{\prime}(p), f^{\prime}(q), f^{\prime}(r)$ are

A
in A.P.
B
in G.P.
C
in H.P.
D
neither in A.P. or G.P. or H.P.
2
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25

If $$\mathrm{U}_{\mathrm{n}}(\mathrm{n}=1,2)$$ denotes the $$\mathrm{n}^{\text {th }}$$ derivative $$(\mathrm{n}=1,2)$$ of $$\mathrm{U}(x)=\frac{\mathrm{L} x+\mathrm{M}}{x^2-2 \mathrm{~B} x+\mathrm{C}}$$ (L, M, B, C are constants), then $$\mathrm{PU}_2+\mathrm{QU}_1+\mathrm{RU}=0$$, holds for

A
$$\mathrm{P}=x^2-2 \mathrm{~B}, \mathrm{Q}=2 x, \mathrm{R}=3 x$$
B
$$\mathrm{P}=x^2-2 \mathrm{~B} x+\mathrm{C}, \mathrm{Q}=4(x-\mathrm{B}), \mathrm{R}=2$$
C
$$\mathrm{P}=2 x, \mathrm{Q}=2 \mathrm{~B}, \mathrm{R}=2$$
D
$$\mathrm{P}=x^2, \mathrm{Q}=x, \mathrm{R}=3$$
3
WB JEE 2024
MCQ (Single Correct Answer)
+2
-0.5

$$ \text { If } y=\tan ^{-1}\left[\frac{\log _e\left(\frac{e}{x^2}\right)}{\log _e\left(e x^2\right)}\right]+\tan ^{-1}\left[\frac{3+2 \log _e x}{1-6 \cdot \log _e x}\right] \text {, then } \frac{d^2 y}{d x^2}= $$

A
2
B
1
C
0
D
$$-$$1
4
WB JEE 2023
MCQ (Single Correct Answer)
+1
-0.25

Suppose $$f:R \to R$$ be given by $$f(x) = \left\{ \matrix{ 1,\,\,\,\,\,\,\,\,\,\,\mathrm{if}\,x = 1 \hfill \cr {e^{({x^{10}} - 1)}} + {(x - 1)^2}\sin {1 \over {x - 1}},\,\mathrm{if}\,x \ne 1 \hfill \cr} \right.$$

then

A
f'(1) does not exist
B
f'(1) exists and is zero
C
f'(1) exist and is 9
D
f'(1) exists and is 10
WB JEE Subjects