Trigonometry
Inverse Trigonometric Functions
MCQ (Single Correct Answer)Subjective
1
WB JEE 2011
MCQ (Single Correct Answer)
+1
-0.25

Let $$f(x) = {x^3}{e^{ - 3x}},\,x > 0$$. Then the maximum value of f(x) is

A
e$$-$$3
B
3e$$-$$3
C
27e$$-$$9
D
$$\infty$$
2
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25

If ' $f$ ' is the inverse function of ' $g$ ' and $g^{\prime}(x)=\frac{1}{1+x^n}$, then the value of $f^{\prime}(x)$ is

A
$1+\{f(x)\}^n$
B
$1-\{f(x)\}^n$
C
$\{1+f(x)\}^n$
D
$\{f(x)\}^n$
3
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25

Let $f(x)$ be a second degree polynomial. If $f(1)=f(-1)$ and $p, q, r$ are in A.P., then $f^{\prime}(p), f^{\prime}(q), f^{\prime}(r)$ are

A
in A.P.
B
in G.P.
C
in H.P.
D
neither in A.P. or G.P. or H.P.
4
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25

If $$\mathrm{U}_{\mathrm{n}}(\mathrm{n}=1,2)$$ denotes the $$\mathrm{n}^{\text {th }}$$ derivative $$(\mathrm{n}=1,2)$$ of $$\mathrm{U}(x)=\frac{\mathrm{L} x+\mathrm{M}}{x^2-2 \mathrm{~B} x+\mathrm{C}}$$ (L, M, B, C are constants), then $$\mathrm{PU}_2+\mathrm{QU}_1+\mathrm{RU}=0$$, holds for

A
$$\mathrm{P}=x^2-2 \mathrm{~B}, \mathrm{Q}=2 x, \mathrm{R}=3 x$$
B
$$\mathrm{P}=x^2-2 \mathrm{~B} x+\mathrm{C}, \mathrm{Q}=4(x-\mathrm{B}), \mathrm{R}=2$$
C
$$\mathrm{P}=2 x, \mathrm{Q}=2 \mathrm{~B}, \mathrm{R}=2$$
D
$$\mathrm{P}=x^2, \mathrm{Q}=x, \mathrm{R}=3$$
WB JEE Subjects