Trigonometry
Inverse Trigonometric Functions
MCQ (Single Correct Answer)Subjective
1
WB JEE 2025
MCQ (Single Correct Answer)
+2
-0.5

Let $a_n$ denote the term independent of $x$ in the expansion of $\left[x+\frac{\sin (1 / n)}{x^2}\right]^{3 n}$, then $\lim \limits_{n \rightarrow \infty} \frac{\left(a_n\right) n!}{{ }^{3 n} P_n}$ equals

A
0
B
1
C
e
D
e/$\sqrt3$
2
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25

$$ \text { Let } f(x)=\left|\begin{array}{ccc} \cos x & x & 1 \\ 2 \sin x & x^3 & 2 x \\ \tan x & x & 1 \end{array}\right| \text {, then } \lim _\limits{x \rightarrow 0} \frac{f(x)}{x^2}= $$

A
2
B
$$-$$2
C
1
D
$$-$$1
3
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25

If $$\alpha, \beta$$ are the roots of the equation $$a x^2+b x+c=0$$ then $$\lim _\limits{x \rightarrow \beta} \frac{1-\cos \left(a x^2+b x+c\right)}{(x-\beta)^2}$$ is

A
$$(\alpha-\beta)^2$$
B
$$\frac{1}{2}(\alpha-\beta)^2$$
C
$$\frac{a^2}{4}(\alpha-\beta)^2$$
D
$$\frac{\mathrm{a}^2}{2}(\alpha-\beta)^2$$
4
WB JEE 2023
MCQ (Single Correct Answer)
+1
-0.25

$$\mathop {\lim }\limits_{x \to \infty } \left\{ {x - \root n \of {(x - {a_1})(x - {a_2})\,...\,(x - {a_n})} } \right\}$$ where $${a_1},{a_2},\,...,\,{a_n}$$ are positive rational numbers. The limit

A
does not exist
B
is $${{{a_1} + {a_2}\, + \,...\,{a_n}} \over n}$$
C
is $$\root n \of {{a_1}{a_2}\,...\,{a_n}} $$
D
is $${n \over {{a_1} + {a_2}\, + \,...\,{a_n}}}$$
WB JEE Subjects