Trigonometry
Inverse Trigonometric Functions
MCQ (Single Correct Answer)Subjective
1
WB JEE 2010
MCQ (Single Correct Answer)
+1
-0.25

$$\int {{e^x}\left( {{2 \over x} - {2 \over {{x^2}}}} \right)dx} $$ is equal to

A
$${{{e^x}} \over x} + C$$
B
$${{{e^x}} \over {2{x^2}}} + C$$
C
$${{2{e^x}} \over x} + C$$
D
$${{2{e^x}} \over {{x^2}}} + C$$
2
WB JEE 2010
MCQ (Single Correct Answer)
+1
-0.25

The value of the integral $$\int {{{dx} \over {{{({e^x} + {e^{ - x}})}^2}}}} $$ is

A
$${1 \over 2}({e^{2x}} + 1) + C$$
B
$${1 \over 2}({e^{ - 2x}} + 1) + C$$
C
$$ - {1 \over 2}{({e^{2x}} + 1)^{ - 1}} + C$$
D
$${1 \over 4}({e^{2x}} - 1) + C$$
3
WB JEE 2010
MCQ (Single Correct Answer)
+1
-0.25

$$\int {\sqrt {1 + \cos x} dx} $$ is equal to

A
$$2\sqrt 2 \cos {x \over 2} + C$$
B
$$2\sqrt 2 \sin {x \over 2} + C$$
C
$$\sqrt 2 \cos {x \over 2} + C$$
D
$$\sqrt 2 \sin {x \over 2} + C$$
4
WB JEE 2011
MCQ (Single Correct Answer)
+1
-0.25

$$\int {{{{x^3}dx} \over {1 + {x^8}}} = } $$

A
$$4{\tan ^{ - 1}}{x^3} + c$$
B
$${1 \over 4}{\tan ^{ - 1}}{x^4} + c$$
C
$$x + 4{\tan ^{ - 1}}{x^4} + c$$
D
$${x^2} + {1 \over 4}{\tan ^{ - 1}}{x^4} + c$$
WB JEE Subjects