Trigonometry
Inverse Trigonometric Functions
MCQ (Single Correct Answer)Subjective
1
WB JEE 2025
MCQ (Single Correct Answer)
+1
-0.25

If $x=-1$ and $x=2$ are extreme points of $f(x)=\alpha \log |x|+\beta x^2+x,(x \neq 0)$, then

A
$\alpha=-6, \beta=\frac{1}{2}$
B
$\alpha=-6, \beta=-\frac{1}{2}$
C
$\alpha=2, \beta=-\frac{1}{2}$
D
$\alpha=2, \beta=\frac{1}{2}$
2
WB JEE 2025
MCQ (Single Correct Answer)
+2
-0.5

Let $f(\theta)=\left|\begin{array}{ccc}1 & \cos \theta & -1 \\ -\sin \theta & 1 & -\cos \theta \\ -1 & \sin \theta & 1\end{array}\right|$. Suppose $A$ and $B$ are respectively maximum and minimum values of $f(\theta)$.Then $(A,B)$ is equal to

A
$(2,1)$
B
$(2,0)$
C
$(\sqrt{2}, 1)$
D
$\left(2, \frac{1}{\sqrt{2}}\right)$
3
WB JEE 2025
MCQ (Single Correct Answer)
+2
-0.5

The maximum number of common normals of $y^2=4 a x$ and $x^2=4 b y$ is equal to

A
3
B
4
C
5
D
6
4
WB JEE 2024
MCQ (Single Correct Answer)
+1
-0.25

$$f(x)=\cos x-1+\frac{x^2}{2!}, x \in \mathbb{R}$$ Then $$\mathrm{f}(x)$$ is

A
decreasing function
B
increasing function
C
neither increasing nor decreasing
D
constant $$\forall x>0$$
WB JEE Subjects