Algebra
Sets and Relations
MCQ (Single Correct Answer)
Quadratic Equations
MCQ (Single Correct Answer)
Sequences and Series
MCQ (Single Correct Answer)
Permutations and Combinations
MCQ (Single Correct Answer)
Three Dimensional Geometry
MCQ (Single Correct Answer)
Matrices and Determinants
MCQ (Single Correct Answer)
Mathematical Reasoning
MCQ (Single Correct Answer)
Trigonometry
Trigonometric Ratios & Identities
MCQ (Single Correct Answer)
Trigonometric Equations
MCQ (Single Correct Answer)
Inverse Trigonometric Functions
MCQ (Single Correct Answer)
Properties of Triangles
MCQ (Single Correct Answer)
Calculus
Limits, Continuity and Differentiability
MCQ (Single Correct Answer)
Application of Derivatives
MCQ (Single Correct Answer)
Indefinite Integration
MCQ (Single Correct Answer)
Definite Integration
MCQ (Single Correct Answer)
Area Under The Curves
MCQ (Single Correct Answer)
Differential Equations
MCQ (Single Correct Answer)
Coordinate Geometry
Straight Lines and Pair of Straight Lines
MCQ (Single Correct Answer)
1
AP EAPCET 2022 - 4th July Evening Shift
MCQ (Single Correct Answer)
+1
-0

If $$A=\left[\begin{array}{ccc}1 & 0 & 0 \\ a & -1 & 0 \\ b & c & 1\end{array}\right]$$ is such that $$A^2=I$$, then

A
$$b=\frac{a c}{2}$$
B
$$b=-\frac{a c}{2}$$
C
$$b=\frac{a+c}{2}$$
D
$$b=\sqrt{a c}$$
2
AP EAPCET 2022 - 4th July Evening Shift
MCQ (Single Correct Answer)
+1
-0

Let $$A=\left[\begin{array}{ccc}-2 & x & 1 \\ x & 1 & 1 \\ 2 & 3 & -1\end{array}\right]$$. If the roots of the equation $$\operatorname{det} A=0$$ are $$l, m$$ then $$l^3-m^3=$$

A
35
B
$$-$$35
C
19
D
$$-$$19
3
AP EAPCET 2022 - 4th July Morning Shift
MCQ (Single Correct Answer)
+1
-0

For $$i=1,2,3$$ and $$j=1,23$$ If $$a_i^2+b_i^2+c_i^2=1, a_i a_j+b_i b_j+c_i c_j=0, \forall i \neq j$$ and $$A=\left[\begin{array}{lll}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{array}\right]$$, then $$\operatorname{det}\left(A A^T\right)=$$

A
0
B
1
C
$$-$$1
D
3
4
AP EAPCET 2022 - 4th July Morning Shift
MCQ (Single Correct Answer)
+1
-0

If $$A=\frac{1}{7}\left[\begin{array}{ccc}3 & -2 & 6 \\ -6 & -3 & 2 \\ -2 & 6 & 3\end{array}\right]$$, then

A
$$A^{-1}=A$$
B
$$A^{-1}=A^T$$
C
$$A^{-1}$$ does not exist
D
$$A^{-1}=-A$$
AP EAPCET Subjects