Algebra
Sets and RelationsLogarithmsQuadratic EquationsSequences and SeriesPermutations and CombinationsProbabilityBinomial TheoremVector AlgebraThree Dimensional GeometryMatrices and DeterminantsStatisticsMathematical ReasoningComplex NumbersTrigonometry
Trigonometric Ratios & IdentitiesTrigonometric EquationsInverse Trigonometric FunctionsProperties of TrianglesCalculus
FunctionsLimits, Continuity and DifferentiabilityDifferentiationApplication of DerivativesIndefinite IntegrationDefinite IntegrationArea Under The CurvesDifferential EquationsCoordinate Geometry
Straight Lines and Pair of Straight LinesCircleParabolaEllipseHyperbolaBinomial Theorem
Practice QuestionsMCQ (Single Correct Answer)
1
The independent term in the expansion of $\left(1+x+2 x^2\right)\left(\frac{3 x^2}{2}-\frac{1}{3 x}\right)^9$ is
AP EAPCET 2024 - 23th May Morning Shift
2
For $|x|<\frac{1}{\sqrt{2}}$, the coefficient of $x$ in the expansion of $\frac{(1-4 x)^2\left(1-2 x^2\right)^{1 / 2}}{(4-x)^{3 / 2}}$ is
AP EAPCET 2024 - 23th May Morning Shift
3
If $P$ is the greatest divisor of $49^n+16 n-1$ for all $n \in N$, then the number of factors of $P$ is
AP EAPCET 2024 - 22th May Evening Shift
4
If the coefficients of $r$ th, $(r+1)$ th and $(r+2)$ th terms in the expansion of $(1+x)^n$ are in the ratio of $4: 15: 42$, then $n-r$ is equal to
AP EAPCET 2024 - 22th May Evening Shift
5
If the coefficients of $(2 r+6)$ th and $(r-1)$ th terms in the expansion of $(1+x)^{21}$ are equal, then the value of $r$ is equal to
AP EAPCET 2024 - 22th May Evening Shift
6
If the $2 \mathrm{nd}, 3 \mathrm{rd}$ and 4 th terms in the expansion of $(x+a)^n$ are $96,216,216$ respectively and $n$ is a positive integer, then $a+x=$
AP EAPCET 2024 - 22th May Morning Shift
7
If $|x|<1$, then the number of terms in the expansion of $\left[\frac{1}{2}\left(1 \cdot 2+2 \cdot 3 x+3 \cdot 4 x^2+\ldots . \infty\right)\right]^{-25}$
AP EAPCET 2024 - 22th May Morning Shift
8
If the ratio of the terms equidistant from the middle term in the expansion of $(l+x)^{12}$ is $\frac{1}{256}(x \in N)$, then sum of all the terms of the expansion $(1+x)^{12}$ is
AP EAPCET 2024 - 21th May Evening Shift
9
If the eleventh term in the binomial expansion of $(x+a)^{15}$ is the geometric mean of the eighth and twelfth terms, then the greatest term in the expansion is
AP EAPCET 2024 - 21th May Morning Shift
10
The sum of the rational terms in the binomial expansion of $\left(\sqrt{2}+3^{1 / 5}\right)^{10}$ is
AP EAPCET 2024 - 21th May Morning Shift
11
If the coefficients of $x^5$ and $x^6$ are equal in the expansion of $\left(a+\frac{x}{5}\right)^{65}$, then the coefficient of $x^2$ in the expansion of $\left(a+\frac{x}{5}\right)^4$ is.
AP EAPCET 2024 - 20th May Evening Shift
12
If $|x|<\frac{2}{3}$, then the 4th term in the expansion of $(3 x-2)^{\frac{2}{3}}$ is :
AP EAPCET 2024 - 20th May Evening Shift
13
The coefficient of $x^5$ in the expansion of $\left(2 x^3-\frac{1}{3 x^2}\right)^5$ is
AP EAPCET 2024 - 20th May Morning Shift
14
Numerically greatest term in the expansion of $(5+3 x)^6$ When, $x=1$, is
AP EAPCET 2024 - 19th May Evening Shift
15
The square root of independent term in the expansion of $ \left( 2x^2 + \frac{5}{x} \right)^5 $ is
AP EAPCET 2024 - 18th May Morning Shift
16
The coefficient of $x^5$ in $\left(3+x+x^2\right)^6$ is
AP EAPCET 2024 - 18th May Morning Shift
17
The absolute value of the difference of the coefficients of $x^4$ and $x^6$ in the expansion of $x^2 - 2x^2 + (x + 1)^4(x^2 - 1)^2$, is
AP EAPCET 2024 - 18th May Morning Shift
18
The least value of $$n$$ so that $${ }^{(n-1)} C_3+{ }^{(n-1)} C_4>{ }^n C_3$$
AP EAPCET 2022 - 4th July Evening Shift