Matrices and Determinants
Practice Questions
MCQ (Single Correct Answer)
1
4. If $A=\left[\begin{array}{lll}83 & 74 & 41 \\ 93 & 96 & 31 \\ 24 & 15 & 79\end{array}\right]$, then $\operatorname{det}\left(A-A^T\right)$ is equal to
AP EAPCET 2024 - 23th May Morning Shift
2
If $\left|\begin{array}{lll}a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c\end{array}\right|>0$, then $a b c>$
AP EAPCET 2024 - 23th May Morning Shift
3

    If the system of equations $a_1 x+b_1 y+c_1 z=0, a_2 x+b_2 y+c_2 z=0$ and $a_3 x+b_3 y+c_3 z=0$ has only trivial solution, then the rank of $\left[\begin{array}{lll}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{array}\right]$ is

AP EAPCET 2024 - 23th May Morning Shift
4
$A=\left[\begin{array}{lll}0 & 1 & 2 \\ 2 & 3 & 0 \\ 4 & 0 & 3\end{array}\right]$ and $B$ is a matrix such that $A B=B A$.If $A B$ is not an identity matrix, then the matrix that can be taken as $B$ is
AP EAPCET 2024 - 22th May Evening Shift
5

If $\alpha, \beta$ and $\gamma(\alpha<\beta<\gamma)$ are the values of $x$ such that $\left[\begin{array}{ccc}x-2 & 0 & 1 \\ 1 & x+3 & 2 \\ 2 & 0 & 2 x-1\end{array}\right]$ is a singular matrix, then $2 \alpha+3 \beta+4 \gamma$ is equal to

AP EAPCET 2024 - 22th May Evening Shift
6
The system of linear equations $x+2 y+z=-3$, $3 x+3 y-2 z=-1$ and $2 x+7 y+7 z=-4$ has
AP EAPCET 2024 - 22th May Evening Shift
7

If the set of equations $x+2 y+3 z=6, x+3 y+5 z=9$, $2 x+5 y+a z=b$ has unique solution, then

AP EAPCET 2024 - 22th May Morning Shift
8

If $P$ and $Q$ are two $3 \times 3$ matrices such that $|P Q|=1$ and $|P|=9$, then the determinant of adjoint of the matrix $P$. $\operatorname{adj} 3 Q$ is

AP EAPCET 2024 - 22th May Morning Shift
9

If $A=\left[\begin{array}{lll}a & 1 & 2 \\ 1 & 2 & b \\ c & 1 & 3\end{array}\right]$ and $\operatorname{adj} A=\left[\begin{array}{ccc}7 & -1 & -5 \\ -3 & 9 & 5 \\ 1 & -3 & 5\end{array}\right]$, then $a^2+b^2+c^2=$

AP EAPCET 2024 - 22th May Morning Shift
10
If $3 A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b\end{array}\right]$ and $A A^T=I$, then $\frac{a}{b}+\frac{b}{a}=$
AP EAPCET 2024 - 21th May Evening Shift
11
$\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|=$
AP EAPCET 2024 - 21th May Evening Shift
12

Assertion (A) : If $B$ is a $3 \times 3$ matrix and $|B|=6$, then $|\operatorname{adj}(B)|=36$

Reason (R) : If $B$ is a square matrix of order $n$, then $|\operatorname{adj}(B)|=|B|^n$

AP EAPCET 2024 - 21th May Evening Shift
13
If $A=\left|\begin{array}{lll}2 & 3 & 4 \\ 1 & k & 2 \\ 4 & 1 & 5\end{array}\right|$ is singular matrix, then the quadratic equation having the roots $k$ an $\frac{1}{k}$ is
AP EAPCET 2024 - 21th May Morning Shift
14
Let $A$ be a $4 \times 4$ matrix and $P$ be is adjoint matrix, If $|P|=\left|\frac{A}{2}\right|$ then $\left|A^{-1}\right|$
AP EAPCET 2024 - 21th May Morning Shift
15
The system $x+2 y+3 z=4,4 x+5 y+3 z=5,3 x+4 y+3 z=\lambda$ is consistent and $3 \lambda=n+100$, then $n=$
AP EAPCET 2024 - 21th May Morning Shift
16
$\left|\begin{array}{ccc}a & b & c \\ a^2 & b^2 & c^2 \\ 1 & 1 & 1\end{array}\right|$ is not equal to
AP EAPCET 2024 - 20th May Evening Shift
17
Let $A, B, C, D$ and $E$ be $n \times n$ matrices each with non-zero determinant. If $A B C D E=I$, then $C^{-1}=$
AP EAPCET 2024 - 20th May Evening Shift
18
If $A=\left[a_{i j}\right], 1 \leq i, j \leq n$ with $n \geq 2$ and $a_{i j}=i+j$ is a matrix, then the rank of $A$ is
AP EAPCET 2024 - 20th May Evening Shift
19
$$ \text { If } A=\left[\begin{array}{lll} 1 & 0 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 4 \end{array}\right] \text {, then } A^2-5 A+6 I= $$
AP EAPCET 2024 - 20th May Morning Shift
20
Sum of the positive roots of the equation $$ \left|\begin{array}{ccc} x^2+2 x & x+2 & 1 \\ 2 x+1 & x-1 & 1 \\ x+2 & -1 & 1 \end{array}\right|=0 \text { is } $$
AP EAPCET 2024 - 20th May Morning Shift
21
If the solution of the system of simultaneous linear equations $x+y-z=6,3 x+2 y-z=5$ and $2 x-y-2 z+3=0$ is $x=\alpha, y=\beta, z=y$, then $\alpha+\beta=$
AP EAPCET 2024 - 20th May Morning Shift
22
$$ \left|\begin{array}{ccc} 1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{array}\right|= $$
AP EAPCET 2024 - 19th May Evening Shift
23
If $A=\left[\begin{array}{cc}1 & 2 \\ -2 & -5\end{array}\right]$ and $\alpha A^2+\beta A=2 I$ for some $\alpha, \beta \in R$, then $\alpha+\beta=$
AP EAPCET 2024 - 19th May Evening Shift
24
The system of equations $$ x+2 y+3 z=6, x+3 y+5 z=9 \text {, } $$ $2 x+5 y+a z=12$ has no solution when $a=$
AP EAPCET 2024 - 19th May Evening Shift
25
If $ \alpha, \beta, \gamma $ are the roots of $ \begin{bmatrix} 1 & -x & -2 \\ -2 & 4 & -x \\ -2 & 1 & -x \end{bmatrix} = 0 $, then $ \alpha \beta + \beta \gamma + \gamma \alpha = $
AP EAPCET 2024 - 18th May Morning Shift
26
If the determinant of a 3rd order matrix $ A $ is $ K $, then the sum of the determinants of the matrices $ A^4 $ and $ (A - A^4) $ is
AP EAPCET 2024 - 18th May Morning Shift
27

While solving a system of linear equations $A X=B$ using Cramer's rule with the usual notation if

$$ \Delta=\left|\begin{array}{ccc} 1 & 1 & 1 \\ 2 & -1 & 2 \\ -1 & 1 & 5 \end{array}\right|, \Delta_1=\left|\begin{array}{ccc} 5 & 1 & 1 \\ 4 & -1 & 2 \\ 11 & 1 & 5 \end{array}\right| \text { and } X=\left[\begin{array}{l} \alpha \\ 2 \\ \beta \end{array}\right] \text {, then } \alpha^2+\beta^2= $$

AP EAPCET 2024 - 18th May Morning Shift
28

If $$A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$$, then $$A A^T$$ is a

AP EAPCET 2022 - 5th July Morning Shift
29

If $$A X=D$$ represents the system of simultaneous linear equations $$x+y+z=6, 5 x-y+2 z=3$$ and $$2 x+y-z=-5$$, then (Adj $$A$$) $$D=$$

AP EAPCET 2022 - 5th July Morning Shift
30

If $$A=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$$, then $$\operatorname{det}\left(A^6+B^6\right)=$$

AP EAPCET 2022 - 5th July Morning Shift
31

Let $$G(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$$. If $$x+y=0$$ then $$G(x) G(y)=$$

AP EAPCET 2022 - 5th July Morning Shift
32

If $$A=\left[\begin{array}{cc}2 & -3 \\ -4 & 1\end{array}\right]$$, then $$\left(A^T\right)^2+(12 A)^T=$$

AP EAPCET 2022 - 4th July Evening Shift
33

If $$a, b, c$$ are respectively the 5 th, 8 th, 13 th terms of an arithmetic progression, then $$\left|\begin{array}{ccc}a & 5 & 1 \\ b & 8 & 1 \\ c & 13 & 1\end{array}\right|=$$

AP EAPCET 2022 - 4th July Evening Shift
34

If $$A=\left[\begin{array}{ccc}1 & 0 & 0 \\ a & -1 & 0 \\ b & c & 1\end{array}\right]$$ is such that $$A^2=I$$, then

AP EAPCET 2022 - 4th July Evening Shift
35

Let $$A=\left[\begin{array}{ccc}-2 & x & 1 \\ x & 1 & 1 \\ 2 & 3 & -1\end{array}\right]$$. If the roots of the equation $$\operatorname{det} A=0$$ are $$l, m$$ then $$l^3-m^3=$$

AP EAPCET 2022 - 4th July Evening Shift
36

For $$i=1,2,3$$ and $$j=1,23$$ If $$a_i^2+b_i^2+c_i^2=1, a_i a_j+b_i b_j+c_i c_j=0, \forall i \neq j$$ and $$A=\left[\begin{array}{lll}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{array}\right]$$, then $$\operatorname{det}\left(A A^T\right)=$$

AP EAPCET 2022 - 4th July Morning Shift
37

If $$A=\frac{1}{7}\left[\begin{array}{ccc}3 & -2 & 6 \\ -6 & -3 & 2 \\ -2 & 6 & 3\end{array}\right]$$, then

AP EAPCET 2022 - 4th July Morning Shift
38

If $$A=\left[\begin{array}{cc}\alpha^2 & 5 \\ 5 & -\alpha\end{array}\right]$$ and $$\operatorname{det}\left(A^{10}\right)=1024$$, then $$\alpha=$$

AP EAPCET 2022 - 4th July Morning Shift
39

Let $$A=\left[\begin{array}{ccc}5 & \sin ^2 \theta & \cos ^2 \theta \\ -\sin ^2 \theta & -5 & 1 \\ \cos ^2 \theta & 1 & 5\end{array}\right]$$. Then, maximum value of $$\operatorname{det}(A)$$ is

AP EAPCET 2022 - 4th July Morning Shift
40

If $$\frac{x^4+24 x^2+28}{\left(x^2+1\right)^3}=\frac{A x+B}{x^2+1}$$ $$+\frac{C x+D}{\left(x^2+1\right)^2}+\frac{E x+F}{\left(x^2+1\right)^3},$$ then the value of $$A+B+C+D+E+F=$$

AP EAPCET 2022 - 4th July Morning Shift
41

The trace of the matrix $$A=\left[\begin{array}{ccc}1 & -5 & 7 \\ 0 & 7 & 9 \\ 11 & 8 & 9\end{array}\right]$$ is

AP EAPCET 2021 - 20th August Morning Shift
42

If $$A, B$$ and $$C$$ are the angles of a triangle, then the system of equations $$-x+y \cos C+z \cos B=0, x \cos C-y+z \cos A=0$$ and $$x \cos B+y \cos A-z=0$$

AP EAPCET 2021 - 20th August Morning Shift
43

If $$\left[\begin{array}{cc}1 & -\tan \theta \\ \tan \theta & 1\end{array}\right]\left[\begin{array}{cc}1 & \tan \theta \\ -\tan \theta & 1\end{array}\right]^{-1} =\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$$, then

AP EAPCET 2021 - 20th August Morning Shift
44

What is the value of $$\left|\begin{array}{ccc}a & b & c \\ a-b & b-c & c-a \\ b+c & c+a & a+b\end{array}\right|$$ ?

AP EAPCET 2021 - 20th August Morning Shift
45

The value of $$\left|\begin{array}{ccc}b+c & a & a \\ b & c+a & b \\ c & c & a+b\end{array}\right|$$ is

AP EAPCET 2021 - 19th August Evening Shift
46

Let $$A, B, C, D$$ be square real matrices such that $$C^T=D A B, D^{\mathrm{T}}=A B C$$ and $$S=A B C D$$, then $$S^2$$ is equal to

AP EAPCET 2021 - 19th August Evening Shift
47

$$A=\left[\begin{array}{ccc}a^2 & 15 & 31 \\ 12 & b^2 & 41 \\ 35 & 61 & c^2\end{array}\right]$$ and $$B=\left[\begin{array}{ccc}2 a & 3 & 5 \\ 2 & 2 b & 8 \\ 1 & 4 & 2 c-3\end{array}\right]$$ are two matrices such that the sum of the principal diagonal elements of both $$A$$ and $$B$$ are equal, then the product of the principal diagonal elements of $$B$$ is

AP EAPCET 2021 - 19th August Evening Shift
48

Let $$a, b$$ and $$c$$ be such that $$b+c \neq 0$$ and $$\begin{aligned} & \left|\begin{array}{ccc} a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1 \end{array}\right| \\ & +\left|\begin{array}{ccc} a+1 & b+1 & c-1 \\ a-1 & b-1 & c+1 \\ (-1)^{n+2} a & (-1)^{n-1} b & (-1)^n c \end{array}\right|=0 \text {, } \\ & \end{aligned}$$

then the value of $$n$$ is

AP EAPCET 2021 - 19th August Evening Shift
49

The equation whose roots are the values of the equation $$\left| {\matrix{ 1 & { - 3} & 1 \cr 1 & 6 & 4 \cr 1 & {3x} & {{x^2}} \cr } } \right| = 0$$ is

AP EAPCET 2021 - 19th August Morning Shift
50

Let a and b be non-zero real numbers such that $$ab=5/2$$ and given $$A = \left[ {\matrix{ a & { - b} \cr b & a \cr } } \right]$$ and $$A{A^T} = 20I$$ ($$l$$ is unit matrix), then the equation whose roots are a and b is

AP EAPCET 2021 - 19th August Morning Shift
51

If $$A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right], 10 B=\left[\begin{array}{ccc}4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3\end{array}\right]$$ and $$B=A^{-1}$$, then the value of $$\alpha$$ is

AP EAPCET 2021 - 19th August Morning Shift
52

The rank of the matrix $$\left[\begin{array}{ccc}4 & 2 & (1-x) \\ 5 & k & 1 \\ 6 & 3 & (1+x)\end{array}\right]$$ is 1 , then,

AP EAPCET 2021 - 19th August Morning Shift
53

If $$a_1, a_2, \ldots . a_9$$ are in GP, then $$\left|\begin{array}{lll}\log a_1 & \log a_2 & \log a_3 \\ \log a_4 & \log a_5 & \log a_6 \\ \log a_7 & \log a_8 & \log a_9\end{array}\right|$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift
54

If $$\mathbf{a}=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}}, \mathbf{b}=\hat{\mathbf{i}}+3 \hat{\mathbf{j}}-\hat{\mathbf{k}}$$ and $$\mathbf{c}=3 \hat{\mathbf{i}}-\hat{\mathbf{j}}-2 \hat{\mathbf{k}}$$, then the value of $$\left|\begin{array}{ccc}\mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} & \mathbf{a} \cdot \mathbf{c} \\ \mathbf{b} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} & \mathbf{b} \cdot \mathbf{c} \\ \mathbf{c} \cdot \mathbf{a} & \mathbf{c} \cdot \mathbf{b} & \mathbf{c} \cdot \mathbf{c}\end{array}\right|$$ is equal to

AP EAPCET 2021 - 19th August Morning Shift