Trigonometry
Inverse Trigonometric Functions
MCQ (Single Correct Answer)Subjective
1
WB JEE 2018
MCQ (Single Correct Answer)
+2
-0.5
Let $$\overrightarrow \alpha $$, $${\overrightarrow \beta }$$, $${\overrightarrow \gamma }$$ be the three unit vectors such that $$\overrightarrow \alpha .\overrightarrow \beta = \overrightarrow \alpha .\overrightarrow \gamma = 0$$ and the angle between $$\overrightarrow \beta $$ and $$\overrightarrow \gamma $$ is 30$$^\circ$$. Then $$\overrightarrow \alpha $$ is
A
2($$\overrightarrow \beta $$ $$ \times $$ $$\overrightarrow \gamma $$)
B
$$-$$ 2($$\overrightarrow \beta $$ $$ \times $$ $$\overrightarrow \gamma $$)
C
$$ \pm $$ 2($$\overrightarrow \beta $$ $$ \times $$ $$\overrightarrow \gamma $$)
D
($$\overrightarrow \beta $$ $$ \times $$ $$\overrightarrow \gamma $$)
2
WB JEE 2017
MCQ (Single Correct Answer)
+2
-0.5
For any vector x, where $$\widehat i$$, $$\widehat j$$, $$\widehat k$$ have their usual meanings the value of $${(x \times \widehat i)^2} + {(x \times \widehat j)^2} + {(x \times \widehat k)^2}$$ where $$\widehat i$$, $$\widehat j$$, $$\widehat k$$ have their usual meanings, is equal to
A
$$|x{|^2}$$
B
2$$|x{|^2}$$
C
3$$|x{|^2}$$
D
4$$|x{|^2}$$
3
WB JEE 2017
MCQ (Single Correct Answer)
+2
-0.5
If the sum of two unit vectors is a unit vector, then the magnitude of their difference is
A
$$\sqrt 2 $$ units
B
2 units
C
$$\sqrt 3 $$ units
D
$$\sqrt 5 $$ units
WB JEE Subjects