Trigonometry
Inverse Trigonometric Functions
MCQ (Single Correct Answer)Subjective
1
WB JEE 2016
MCQ (Single Correct Answer)
+1
-0.25
If z1, z2, z3 are imaginary numbers such that $$|{z_1}|\, = \,|{z_2}|\, = \,|{z_3}|\, = \,\left| {{1 \over {{z_1}}} + {1 \over {{z_2}}} + {1 \over {{z_3}}}} \right|\, = \,1$$, then $$|{z_1} + {z_2} + {z_3}|$$ is
A
equal to 1
B
less than 1
C
greater than 1
D
equal to 3
2
WB JEE 2016
MCQ (Single Correct Answer)
+1
-0.25
The number of ways in which the letters of the word ARRANGE can be permuted such that the R's occur together, is
A
$${{7!} \over {2!2!}}$$
B
$${{7!} \over {2!}}$$
C
$${{6!} \over {2!}}$$
D
5! $$ \times $$ 2!
3
WB JEE 2016
MCQ (Single Correct Answer)
+1
-0.25
$$1 + {}^n{C_1}\cos \theta + {}^n{C_2}\cos 2\theta + ... + {}^n{C_n}\cos n\theta $$ equals
A
$${\left( {2\cos {\theta \over 2}} \right)^n}\cos {{n\theta } \over 2}$$
B
$$2{\cos ^2}{{n\theta } \over 2}$$
C
$$2{\cos ^{2n}}{\theta \over 2}$$
D
$${\left( {2{{\cos }^2}{\theta \over 2}} \right)^n}$$
4
WB JEE 2016
MCQ (Single Correct Answer)
+1
-0.25
Let $$Q = \left[ {\matrix{ {\cos {\pi \over 4}} & { - \sin {\pi \over 4}} \cr {\sin {\pi \over 4}} & {\cos {\pi \over 4}} \cr } } \right]$$ and $$x = \left[ {\matrix{ {{1 \over {\sqrt 2 }}} \cr {{1 \over {\sqrt 2 }}} \cr } } \right]$$, then Q3x is equal to
A
$$\left( {\matrix{ 0 \cr 1 \cr } } \right)$$
B
$$\left( {\matrix{ { - {1 \over {\sqrt 2 }}} \cr {{1 \over {\sqrt 2 }}} \cr } } \right)$$
C
$$\left( {\matrix{ { - 1} \cr 0 \cr } } \right)$$
D
$$\left( {\matrix{ { - {1 \over {\sqrt 2 }}} \cr { - {1 \over {\sqrt 2 }}} \cr } } \right)$$
WB JEE Subjects