Inverse Trigonometric Functions
Practice Questions
MCQ (Single Correct Answer)
1

$$ \text { Evaluate: } \cot ^{-1}\left(-\frac{3}{\sqrt{3}}\right)-\sec ^{-1}\left(-\frac{2}{\sqrt{2}}\right)-\operatorname{cosec}^{-1}(-1)-\tan ^{-1}(1) $$

COMEDK 2024 Evening Shift
2

$$ \text { The function } f(x)=\tan ^{-1}(\sin x+\cos x) \text { is an increasing function in } $$

COMEDK 2024 Evening Shift
3

$$ \text { Evaluate: } \cos ^{-1}\left(\cos \frac{35 \pi}{18}\right)-\sin ^{-1}\left(\sin \frac{35 \pi}{18}\right) $$

COMEDK 2024 Evening Shift
4

Evaluate :

$$ \operatorname{cosec}^{-1}\left(-\frac{2 \sqrt{3}}{3}\right)+\tan ^{-1}\left(-\frac{\sqrt{3}}{3}\right)+\sec ^{-1} 2+\cos ^{-1}\left(-\frac{1}{2}\right)-\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)$$

COMEDK 2024 Afternoon Shift
5

$$ \text { If } y=\sin ^{-1}(\sqrt{\sin x}) \text {, then } \frac{d y}{d x} \text { equals } $$

COMEDK 2024 Afternoon Shift
6

$$ \text { If } \alpha=\tan ^{-1}\left(\tan \frac{5 \pi}{4}\right) \text { and } \beta=\tan ^{-1}\left(-\tan \frac{2 \pi}{3}\right) \text { then } $$

COMEDK 2024 Afternoon Shift
7

Evaluate : $$\cos ^{-1}\left[\cos \left(-680^{\circ}\right)\right]+\sin ^{-1}\left[\sin \left(-600^{\circ}\right)\right]-\cos ^{-1}\left(\sin 270^{\circ}\right)$$

COMEDK 2024 Morning Shift
8

$$ \text { The value of } \sin ^{-1}\left[\cot \left(\frac{1}{2} \tan ^{-1} \frac{1}{\sqrt{3}}+\cos ^{-1} \frac{\sqrt{12}}{4}+\sin ^{-1} \frac{1}{\sqrt{2}}\right)\right] $$ is

COMEDK 2024 Morning Shift
9

$$ \text { Let } f(x)=\cos ^{-1}(3 x-1) \text {, then domain of } f(x) \text { is equal to } $$

COMEDK 2023 Evening Shift
10

$$ \text { The value of } \sin ^{-1}\left[\cos \left(39 \frac{\pi}{5}\right)\right] \text { is } $$

COMEDK 2023 Evening Shift
11

The value of $$\sin \left[ {2{{\cos }^{ - 1}}{{\sqrt 5 } \over 3}} \right]$$ is

COMEDK 2020
12

The solution of $${\tan ^{ - 1}}x + 2{\cot ^{ - 1}}x = {{2\pi } \over 3}$$ is

COMEDK 2020
13

If $${\sec ^{ - 1}}\left( {{{1 + x} \over {1 - y}}} \right) = a$$, then $${{dy} \over {dx}}$$ is

COMEDK 2020