ExamSIDE
Questions (Powered by ExamGOAL)
Algebra
Sets and RelationsLogarithmsComplex NumbersQuadratic EquationsSequences and SeriesPermutations and CombinationsProbabilityBinomial TheoremVector AlgebraThree Dimensional GeometryMatrices and DeterminantsStatisticsMathematical ReasoningLinear Programming
Trigonometry
Trigonometric Ratios & IdentitiesTrigonometric EquationsInverse Trigonometric FunctionsProperties of Triangles
Coordinate Geometry
Straight Lines and Pair of Straight LinesCircleParabolaEllipseHyperbola
Calculus
FunctionsLimits, Continuity and DifferentiabilityDifferentiationApplication of DerivativesIndefinite IntegrationDefinite IntegrationArea Under The CurvesDifferential Equations
Definite Integration
Practice Questions
MCQ (Single Correct Answer)
1

$$ \text { The value of the integral } \int_\limits{\frac{1}{3}}^1 \frac{\left(x-x^3\right)^{\frac{1}{3}}}{x^4} d x \text { is } $$

COMEDK 2024 Evening Shift
2

If $$a$$ is a real number such that $$\int_\limits0^a x d x \leq a+4$$ then

COMEDK 2024 Evening Shift
3

$$ \text { If } I_n=\int_\limits0^{\frac{\pi}{4}} \tan ^n x d x \text {, for } n \geq 2 \text {, then } I_n+I_{n-2}= $$

COMEDK 2024 Evening Shift
4

$$ \int_\limits0^{\frac{\pi}{2}} \frac{\cos x}{1+\cos x+\sin x} d x= $$

COMEDK 2024 Afternoon Shift
5

$$ \int_\limits{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\cos x-\cos ^3 x} d x \text { is equal to } $$

COMEDK 2024 Afternoon Shift
6

$$ \int_\limits{-1}^1 \frac{d}{d x}\left(\tan ^{-1} \frac{1}{x}\right) d x \text { is } $$

COMEDK 2024 Morning Shift
7

$$\int\limits_{-\pi / 2}^{\pi / 2} \sin ^2 x d x$$ is equal to

COMEDK 2023 Morning Shift
8

$$ \int_0^2\left|x^2+2 x-3\right| d x \text { is equal to } $$

COMEDK 2023 Evening Shift
9

$$\int\limits_{ - {\pi \over 2}}^{{\pi \over 2}} {\cos x\,dx} $$

COMEDK 2022
10

$$\int_{ - \pi /2}^{\pi /2} {\sin xdx} $$

COMEDK 2021
11

The value of the integral $$\int\limits_0^{\pi /2} {({{\sin }^{100}}x - {{\cos }^{100}}x)dx} $$ is

COMEDK 2020
12

If $$k\int\limits_0^1 {x\,.\,f(3x)dx = \int\limits_0^3 {t\,.\,f(t)dt} } $$, then the value of $$k$$ is

COMEDK 2020
© 2025 ExamGOAL. All rights reserved.
Privacy PolicyTerms of Service