Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 1993
MCQ (Single Correct Answer)
+1
-0.3
The proposition $$p \wedge \left( { \sim p \vee q} \right)$$ is
A
a tautology
B
$$ \Leftrightarrow \left( {p \wedge q} \right)$$
C
$$ \Leftrightarrow \left( {p \vee q} \right)$$
D
a contradiction
2
GATE CSE 1992
MCQ (Single Correct Answer)
+1
-0.3
Which of the following predicate calculus statements is/are valid?
A
$$\left( {\forall \,x} \right){\rm P}\left( x \right) \vee \left( {\forall \,x} \right)Q\left( x \right) \to \left( {\forall \,x} \right)$$
$$\left\{ {{\rm P}\left( x \right) \vee Q\left( x \right)} \right\}$$
B
$$\left( {\exists \,x} \right){\rm P}\left( x \right) \wedge \left( {\exists \,x} \right)Q\left( x \right) \to \left( {\exists \,x} \right)$$
$$\left\{ {{\rm P}\left( x \right) \wedge Q\left( x \right)} \right\}$$
C
$$\left( {\forall \,x} \right)\,\left\{ {{\rm P}\left( x \right) \vee Q\left( x \right)} \right\} \to \left( {\forall \,x} \right)\,\,$$
$${\rm P}\left( x \right) \vee \left( {\forall \,x} \right)\,\,Q\left( x \right)$$
D
$$\left( {\exists \,x} \right)\,\,\left\{ {{\rm P}\left( x \right) \vee Q\left( x \right)} \right\} \to \sim \left( {\forall \,x} \right)\,\,$$
$$\,{\rm P}\left( x \right) \vee \left( {\exists \,x} \right)Q\left( x \right)$$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization