Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2008
MCQ (Single Correct Answer)
+1
-0.3
A set of Boolean connectives is functionally complete if all Boolean function can be synthesized using those, Which of the following sets of connectives is NOT functionally complete?
A
EX-NOR
B
implication, negation
C
OR, negation
D
NAND
2
GATE CSE 2004
MCQ (Single Correct Answer)
+1
-0.3
Identify the correct translation into logical notation of the following assertion.

$$Some\,boys\,in\,the\,class\,are\,taller\,than\,all\,the\,girls$$
Note: taller$$\left( {x,\,y} \right)$$ is true if $$x$$ is taller than $$y$$.

A
$$\left( {\exists x} \right)\left( {boy\left( x \right) \to \left( {\forall y} \right)\left( {girl\left( y \right) \wedge taller\left( {x,y} \right)} \right)} \right)$$
B
$$\left( {\exists x} \right)\left( {boy\left( x \right) \wedge \left( {\forall y} \right)\left( {girl\left( y \right) \wedge taller\left( {x,y} \right)} \right)} \right)$$
C
$$\left( {\exists x} \right)\left( {boy\left( x \right) \to \left( {\forall y} \right)\left( {girl\left( y \right) \to taller\left( {x,y} \right)} \right)} \right)$$
D
$$\left( {\exists x} \right)\left( {boy\left( x \right) \wedge \left( {\forall y} \right)\left( {girl\left( y \right) \to taller\left( {x,y} \right)} \right)} \right)$$
3
GATE CSE 2004
MCQ (Single Correct Answer)
+1
-0.3
Let $$a(x,y)$$, $$b(x,y)$$ and $$c(x,y)$$ be three statements with variables $$x$$ and $$y$$ chosen from some universe. Consider the following statement: $$$\left( {\exists x} \right)\left( {\forall y} \right)\left[ {\left( {a\left( {x,\,y} \right) \wedge b\left( {x,\,y} \right)} \right) \wedge \neg c\left( {x,\,y} \right)} \right]$$$

Which one of the following is its equivalent?

A
$$\left( {\forall x} \right)\left( {\exists y} \right)\left[ {\left( {a\left( {x,\,y} \right) \vee b\left( {x,\,y} \right)} \right) \to c\left( {x,\,y} \right)} \right]$$
B
$$\left( {\exists x} \right)\left( {\forall y} \right)\left[ {\left( {a\left( {x,\,y} \right) \vee b\left( {x,\,y} \right)} \right) \wedge \neg c\left( {x,\,y} \right)} \right]$$
C
$$ - \left[ {\left( {\forall x} \right)\left( {\exists y} \right)\left[ {\left( {a\left( {x,\,y} \right) \wedge b\left( {x,\,y} \right)} \right) \to c\left( {x,\,y} \right)} \right]} \right]$$
D
$$ - \left[ {\left( {\forall x} \right)\left( {\exists y} \right)\left[ {\left( {a\left( {x,\,y} \right) \vee b\left( {x,\,y} \right)} \right) \to c\left( {x,\,y} \right)} \right]} \right]$$
4
GATE CSE 2002
MCQ (Single Correct Answer)
+1
-0.3
"If X then Y unless Z" is represented by which of the following formulas in propositional logic? (" $$\neg $$ " is negation, " $$ \wedge $$ " is conjunction, and " $$ \to $$ " is implication)
A
$$\left( {{\rm X} \wedge \neg Z} \right) \to Y$$
B
$$\left( {X \wedge Y} \right) \to \neg Z$$
C
$${\rm X} \to \left( {Y \wedge \neg Z} \right)$$
D
$$\left( {{\rm X} \to Y} \right) \wedge \neg Z$$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization