Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2004
MCQ (Single Correct Answer)
+1
-0.3
Let $$a(x,y)$$, $$b(x,y)$$ and $$c(x,y)$$ be three statements with variables $$x$$ and $$y$$ chosen from some universe. Consider the following statement: $$$\left( {\exists x} \right)\left( {\forall y} \right)\left[ {\left( {a\left( {x,\,y} \right) \wedge b\left( {x,\,y} \right)} \right) \wedge \neg c\left( {x,\,y} \right)} \right]$$$

Which one of the following is its equivalent?

A
$$\left( {\forall x} \right)\left( {\exists y} \right)\left[ {\left( {a\left( {x,\,y} \right) \vee b\left( {x,\,y} \right)} \right) \to c\left( {x,\,y} \right)} \right]$$
B
$$\left( {\exists x} \right)\left( {\forall y} \right)\left[ {\left( {a\left( {x,\,y} \right) \vee b\left( {x,\,y} \right)} \right) \wedge \neg c\left( {x,\,y} \right)} \right]$$
C
$$ - \left[ {\left( {\forall x} \right)\left( {\exists y} \right)\left[ {\left( {a\left( {x,\,y} \right) \wedge b\left( {x,\,y} \right)} \right) \to c\left( {x,\,y} \right)} \right]} \right]$$
D
$$ - \left[ {\left( {\forall x} \right)\left( {\exists y} \right)\left[ {\left( {a\left( {x,\,y} \right) \vee b\left( {x,\,y} \right)} \right) \to c\left( {x,\,y} \right)} \right]} \right]$$
2
GATE CSE 2002
MCQ (Single Correct Answer)
+1
-0.3
"If X then Y unless Z" is represented by which of the following formulas in propositional logic? (" $$\neg $$ " is negation, " $$ \wedge $$ " is conjunction, and " $$ \to $$ " is implication)
A
$$\left( {{\rm X} \wedge \neg Z} \right) \to Y$$
B
$$\left( {X \wedge Y} \right) \to \neg Z$$
C
$${\rm X} \to \left( {Y \wedge \neg Z} \right)$$
D
$$\left( {{\rm X} \to Y} \right) \wedge \neg Z$$
3
GATE CSE 2001
MCQ (Single Correct Answer)
+1
-0.3
Consider two well-formed formulas in propositional logic
$$F1:P \Rightarrow \neg P$$
$$F2:\left( {P \Rightarrow \neg P} \right) \vee \left( {\neg P \Rightarrow } \right)$$

Which of the following statements is correct?

A
F1 is satisfiable, F2 is valid
B
F1 is unsatisfiable, F2 is satisfiable
C
F1 is unsatisfiable, F2 is valid
D
F1 and F2 are both satisfiable
4
GATE CSE 1998
MCQ (Single Correct Answer)
+1
-0.3
What is the converse of the following assertion?
I stay only if you go
A
I stay if you go
B
If I stay then you go
C
If you do not go then I do not stay
D
If I do not stay then you go
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization