Industrial Engineering
Line Balancing
Marks 21
GATE ME 2011
MCQ (Single Correct Answer)
+2
-0.6
One unit of product $${P_1}$$ requires $$3$$ $$kg$$ of resource $${R_1}$$ and $$1$$ $$kg$$ of resource $${R_2}$$. One unit of product $${P_2}$$ requires $$2$$ $$kg$$ of resource $${R_1}$$ and $$2$$ $$kg$$ of resource $${R_2}$$. The profits per unit by selling product $${P_1}$$ and $${P_2}$$ are Rs. $$2000$$ and Rs. $$3000$$ respectively. The manufacturer has $$90$$ $$kg$$ of resource $${R_1}$$ and $$100$$ $$kg$$ of resource $${R_2}$$.
The manufacturer can make a maximum profit of Rs.
2
GATE ME 2011
MCQ (Single Correct Answer)
+2
-0.6
One unit of product $${P_1}$$ requires $$3$$ $$kg$$ of resource $${R_1}$$ and $$1$$ $$kg$$ of resource $${R_2}$$. One unit of product $${P_2}$$ requires $$2$$ $$kg$$ of resource $${R_1}$$ and $$2$$ $$kg$$ of resource $${R_2}$$. The profits per unit by selling product $${P_1}$$ and $${P_2}$$ are Rs. $$2000$$ and Rs. $$3000$$ respectively. The manufacturer has $$90$$ $$kg$$ of resource $${R_1}$$ and $$100$$ $$kg$$ of resource $${R_2}$$.
The unit worth of resource $${R_2}$$. i.e. dual price of resource $${R_2}$$ in Rs. per $$kg$$ is
3
GATE ME 2009
MCQ (Single Correct Answer)
+2
-0.6
Consider the following Linear Programming problem $$(LLP)$$
Maximize: $$Z = 3{x_1} + 2{x_2}$$
$$\,\,$$ Subject $$\,\,$$ to
$$\eqalign{
& \,\,\,\,\,\,\,{x_1} \le 4 \cr
& \,\,\,\,\,\,\,{x_2} \le 6 \cr
& 3{x_1} + 2{x_2} \le 18 \cr
& {x_1} \ge 0,\,\,{x_2} \ge 0 \cr} $$
4
GATE ME 2008
MCQ (Single Correct Answer)
+2
-0.6
Consider the Linear programme $$(LP)$$
Max $$4x$$ + $$6y$$
Subject to
$$\eqalign{ & \,\,\,\,\,\,\,\,\,\,\,3x + 2y \le 6 \cr & \,\,\,\,\,\,\,\,\,\,\,2x + 3y \le 6 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x,y \ge 0 \cr} $$
Max $$4x$$ + $$6y$$
Subject to
$$\eqalign{ & \,\,\,\,\,\,\,\,\,\,\,3x + 2y \le 6 \cr & \,\,\,\,\,\,\,\,\,\,\,2x + 3y \le 6 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x,y \ge 0 \cr} $$
The dual for the $$LP$$ is
Questions Asked from Marks 2
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude