Industrial Engineering
Production Planning and Control
Marks 1Marks 2Marks 5
Line Balancing
Marks 2
Forecasting
Marks 1Marks 2
Linear Programming
Marks 1Marks 2Marks 5
Assignment
Marks 1Marks 2
Inventory Control
Marks 1Marks 2Marks 5
Transportation
Marks 1Marks 2Marks 5
1
GATE ME 2013
MCQ (Single Correct Answer)
+2
-0.6
A linear programming problem is shown below.
$$\eqalign{ & Maximize\,\,\,\,3x + 7y \cr & Subject\,\,to\,\,\,3x + 7y \le 10 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4x + 6y \le 8 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x,\,\,y \ge 0 \cr} $$

It has ..............

A
an unbounded objective function
B
exactly one optimal solution
C
exactly two optimal solutions
D
infinitely many optimal solutions
2
GATE ME 2011
MCQ (Single Correct Answer)
+2
-0.6
One unit of product $${P_1}$$ requires $$3$$ $$kg$$ of resource $${R_1}$$ and $$1$$ $$kg$$ of resource $${R_2}$$. One unit of product $${P_2}$$ requires $$2$$ $$kg$$ of resource $${R_1}$$ and $$2$$ $$kg$$ of resource $${R_2}$$. The profits per unit by selling product $${P_1}$$ and $${P_2}$$ are Rs. $$2000$$ and Rs. $$3000$$ respectively. The manufacturer has $$90$$ $$kg$$ of resource $${R_1}$$ and $$100$$ $$kg$$ of resource $${R_2}$$.

The manufacturer can make a maximum profit of Rs.

A
$$60,000$$
B
$$135,000$$
C
$$150,000$$
D
$$200,000$$
3
GATE ME 2011
MCQ (Single Correct Answer)
+2
-0.6
One unit of product $${P_1}$$ requires $$3$$ $$kg$$ of resource $${R_1}$$ and $$1$$ $$kg$$ of resource $${R_2}$$. One unit of product $${P_2}$$ requires $$2$$ $$kg$$ of resource $${R_1}$$ and $$2$$ $$kg$$ of resource $${R_2}$$. The profits per unit by selling product $${P_1}$$ and $${P_2}$$ are Rs. $$2000$$ and Rs. $$3000$$ respectively. The manufacturer has $$90$$ $$kg$$ of resource $${R_1}$$ and $$100$$ $$kg$$ of resource $${R_2}$$.

The unit worth of resource $${R_2}$$. i.e. dual price of resource $${R_2}$$ in Rs. per $$kg$$ is

A
$$0$$
B
$$1350$$
C
$$1500$$
D
$$2000$$
4
GATE ME 2009
MCQ (Single Correct Answer)
+2
-0.6
Consider the following Linear Programming problem $$(LLP)$$

Maximize: $$Z = 3{x_1} + 2{x_2}$$
$$\,\,$$ Subject $$\,\,$$ to
$$\eqalign{ & \,\,\,\,\,\,\,{x_1} \le 4 \cr & \,\,\,\,\,\,\,{x_2} \le 6 \cr & 3{x_1} + 2{x_2} \le 18 \cr & {x_1} \ge 0,\,\,{x_2} \ge 0 \cr} $$

A
The $$LPP$$ has a unique optimal solution.
B
The $$LPP$$ is infeasible
C
The $$LPP$$ is unbounded
D
The $$LPP$$ has multiple optimal solutions.
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude