Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2015 Set 2
Numerical
+2
-0
The number of onto functions (subjective functions) from set $$X = \left\{ {1,2,3,4} \right\}$$ to set $$Y = \left\{ {a,b,c} \right\}$$ is __________________.
Your input ____
2
GATE CSE 2015 Set 2
Numerical
+2
-0
Let $$X$$ and $$Y$$ denote the sets containing $$2$$ and $$20$$ distinct objects respectively and $$𝐹$$ denote the set of all possible functions defined from $$X$$ to $$Y$$. Let $$f$$ be randomly chosen from $$F.$$ The probability of $$f$$ being one-to-one is ________.
Your input ____
3
GATE CSE 2014 Set 3
Numerical
+2
-0
There are two elements $$x, y$$ in a group $$\left( {G,\, * } \right)$$ such that every elements in the group can be written as a product of some number of $$x's$$ and $$y's$$ in some order. It is known that
$$x * x = y * y = x * y * x * y = y * x * y * x = e$$
where $$e$$ is the identity element. The maximum number of elements in such a group is ______.
Your input ____
4
GATE CSE 2014 Set 3
MCQ (Single Correct Answer)
+2
-0.6
Consider the set of all functions $$f:\left\{ {0,\,1,.....,2014} \right\} \to \left\{ {0,\,1,.....,2014} \right\}$$ such that $$f\left( {f\left( i \right)} \right) = i,\,\,\,$$ for all $$0 \le i \le 2014.$$ Consider the following statements:
$$P$$. For each such function it must be the case that for every $$i$$, $$f\left( i \right) = i$$
$$Q$$. For each such function it must be the case that for some $$i$$, $$f\left( i \right) = 1$$
$$R$$. Each such function must be onto.

Which one of the following id CORRECT?

A
$$P, Q$$ and $$R$$ are true
B
Only $$Q$$ and $$R$$ are true
C
Only $$P$$ and $$Q$$ are true
D
Only $$R$$ is true
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization