Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2018
MCQ (Single Correct Answer)
+2
-0.6
Let N be the set of natural numbers. Consider the following sets.

$$\,\,\,\,\,\,\,\,$$ $$P:$$ Set of Rational numbers (positive and negative)
$$\,\,\,\,\,\,\,\,$$ $$Q:$$ Set of functions from $$\left\{ {0,1} \right\}$$ to $$N$$
$$\,\,\,\,\,\,\,\,$$ $$R:$$ Set of functions from $$N$$ to $$\left\{ {0,1} \right\}$$
$$\,\,\,\,\,\,\,\,$$ $$S:$$ Set of finite subsets of $$N.$$

Which of the sets above are countable?

A
$$Q$$ and $$S$$ only
B
$$P$$ and $$S$$ only
C
$$P$$ and $$R$$ only
D
$$P, Q$$ and $$S$$ only
2
GATE CSE 2016 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Consider a set $$U$$ of $$23$$ different compounds in a Chemistry lab. There is a subset $$S$$ of $$U$$ of $$9$$ compounds, each of which reacts with exactly $$3$$ compounds of $$U.$$ Consider the following statements:

$$\,\,\,\,\,\,\,{\rm I}.\,\,\,\,\,$$ Each compound in $$U \ S$$ reacts with an odd number of compounds.
$$\,\,\,\,\,{\rm I}{\rm I}.\,\,\,\,\,$$ At least one compound in $$U \ S$$ reacts with an odd number of compounds.
$$\,\,\,{\rm I}{\rm I}{\rm I}.\,\,\,\,\,$$ Each compound in $$U \ S$$ reacts with an even number of compounds.

Which one of the above statements is ALWAYS TRUE?

A
Only $${\rm I}$$
B
Only $${\rm II}$$
C
Only $${\rm III}$$
D
None
3
GATE CSE 2016 Set 2
MCQ (Single Correct Answer)
+2
-0.6
A binary relation $$R$$ on $$N \times N$$ is defined as follows: $$(a,b)R(c,d)$$ if $$a \le c$$ or $$b \le d.$$ Consider the following propositions:

$$P:$$ $$R$$ is reflexive
$$Q:$$ $$R$$ is transitive

Which one of the following statements is TRUE?

A
Both $$P$$ and $$Q$$ are true
B
$$P$$ is true and $$Q$$ is false
C
$$P$$ is false and $$Q$$ is true
D
Both $$P$$ and $$Q$$ are false
4
GATE CSE 2016 Set 1
Numerical
+2
-0
A function $$f:\,\,{N^ + } \to {N^ + },$$ defined on the set of positive integers $${N^ + },$$ satisfies the following properties: $$$\eqalign{ & f\left( n \right) = f\left( {n/2} \right)\,\,\,\,if\,\,\,\,n\,\,\,\,is\,\,\,\,even \cr & f\left( n \right) = f\left( {n + 5} \right)\,\,\,\,if\,\,\,\,n\,\,\,\,is\,\,\,\,odd \cr} $$$

Let $$R = \left\{ i \right.|\exists j:f\left( j \right) = \left. i \right\}$$ be the set of distinct values that $$f$$ takes. The maximum possible size of $$R$$ is _____________________.

Your input ____
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization