Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2007
MCQ (Single Correct Answer)
+2
-0.6
Suppose that a robot is placed on the Cartesian plane. At each step it is allowed to move either one unit up or one unit right, i.e., if it is at $$(i, j)$$ then it can move to either $$(i+1, j)$$ or $$(i, j+1)$$

How many distinct path are there for the robot to reach the point $$(10, 10)$$ starting from the initial position $$(0, 0)$$?

A
$$\left( {\matrix{ {20} \cr {10} \cr } } \right)$$
B
$${2^{20}}$$
C
$${2^{10}}$$
D
None of the above
2
GATE CSE 2007
MCQ (Single Correct Answer)
+2
-0.6
Suppose that a robot is placed on the Cartesian plane. At each step it is allowed to move either one unit up or one unit right, i.e., if it is at $$(i, j)$$ then it can move to either $$(i+1, j)$$ or $$(i, j+1)$$

Suppose that the robot is not allowed to traverse the line segment from $$(4, 4)$$ to $$(5,4)$$. With this constraint, how many distinct path are there for the robot to reach $$(10, 10)$$ starting from $$(0,0)$$?

A
$${2^{9}}$$
B
$${2^{19}}$$
C
$$\left( {\matrix{ 8 \cr 4 \cr } } \right) \times \left( {\matrix{ {11} \cr 5 \cr } } \right)$$
D
$$\left( {\matrix{ {20} \cr {10} \cr } } \right) - \left( {\matrix{ 8 \cr 4 \cr } } \right) \times \left( {\matrix{ {11} \cr 5 \cr } } \right)$$
3
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider the polynomial $$P\left( x \right) = {a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3},$$ where $${a_i} \ne 0,\forall i$$. The minimum number of multiplications needed to evaluate $$p$$ on an input $$x$$ is
A
$$3$$
B
$$4$$
C
$$6$$
D
$$5$$
4
GATE CSE 2006
MCQ (Single Correct Answer)
+2
-0.6
For each elements in a set of size $$2n$$, an unbiased coin in tossed. The $$2n$$ coin tosses are independent. An element is chhoosen if the corresponding coin toss were head.The probability that exactly $$n$$ elements are chosen is
A
$${{\left( {\matrix{ {2n} \cr n \cr } } \right)} \over {{4^n}}}$$
B
$${{\left( {\matrix{ {2n} \cr n \cr } } \right)} \over {{2^n}}}$$
C
$${1 \over {\left( {\matrix{ {2n} \cr n \cr } } \right)}}$$
D
$${1 \over 2}$$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization