Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
Let $${x_n}$$ denote the number of binary strings of length $$n$$ that contain no consecutive $$0s$$.

The value of $${x_5}$$ is

A
$$5$$
B
$$7$$
C
$$8$$
D
$$13$$
2
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
Let $${x_n}$$ denote the number of binary strings of length $$n$$ that contains no consecutive $$0s$$.

Which of the following recurrences does $${x_n}$$ satisfy?

A
$${x_n} = 2{x_{n - 1}}$$
B
$${x_n} = {x_{\left[ {n/2} \right]}} + 1$$
C
$${x_n} = {x_{\left[ {n/2} \right]}} + n$$
D
$${x_n} = {x_{n - 1}} + {x_{n - 2}}$$
3
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
The exponent of $$11$$ in the prime factorization of $$300!$$ is
A
$$27$$
B
$$28$$
C
$$29$$
D
$$30$$
4
GATE CSE 2008
MCQ (Single Correct Answer)
+2
-0.6
In how many ways can $$b$$ blue balls and $$r$$ red balls be distributed in $$n$$ distinct boxes?
A
$${{\left( {n + b - 1} \right)!\left( {n + r - 1} \right)!} \over {\left( {n - 1} \right)!b!\left( {n - 1} \right)!r!}}$$
B
$${{\left( {n + \left( {b + r} \right) - 1} \right)!} \over {\left( {n - 1} \right)!\left( {n - 1} \right)!\left( {b + r} \right)!}}$$
C
$${{n!} \over {b!r!}}$$
D
$${{\left( {n + \left( {b + r} \right) - 1} \right)!} \over {n!\left( {b + r - 1} \right)!}}$$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization