Thermodynamics
1
GATE ME 2001
Subjective
+5
-0
Stream at $$300$$ $$kPa$$ and $${500^ \circ }C\,\,\left( {h = 3486.0\,\,kJ/kg} \right)$$ enters a steam turbine and exits at atmospheric pressure and $${350^ \circ }C\,\,\left( {h = 3175.8\,\,kJ/kg} \right).$$ Heat losses in turbine are $$50$$ $$kW$$ and the mass flow rate is $$0.25$$ $$kg/s$$. Determine the power output of the turbine if kinetic energy losses are negligible.
2
GATE ME 2000
Subjective
+5
-0
A simple impulse turbine expands steam frictionlessly from $$12$$ bar, $${250^0}C$$ with an enthalpy of $$2935$$ $$kJ/kg$$ to an enthalpy of $$2584$$ $$kJ/kg$$ at $$0.1$$ bar. Assuming that the nozzle makes an angle of $${20^0}$$ with the blade motion, and that the blades are symmetrical, find the blade velocity that produces maximum efficiency for a turbine speed of $$3600$$ rev/min. assume that the steam enters the nozzle with negligible velocity.
3
GATE ME 1999
Subjective
+5
-0
An adiabatic steam turbine receives dry saturated steam at $$1.0\,\,\,MN/{m^2}$$ and discharges it $$0.1\,\,\,MN/{m^2}.$$ The steam flow rate is $$3$$ $$kg/s$$ and the moisture at exit in negligible. If the ambient temperature is $$300$$ $$K,$$ determine the rate of entropy production and the lost power.

4
GATE ME 1998
Subjective
+5
-0
A Rankine cycle operates between pressures of $$80$$ bar and $$0.1$$ bar. The maximum cycle temperature is $${600^ \circ }C.$$ If the steam turbine and condensate pump efficiencies are $$0.9$$ and $$0.8$$, respectively, calculate the specific work and thermal efficiency. Relevant steam table extract is given below:

GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude