Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2022
MCQ (More than One Correct Answer)
+2
-0

Which of the following is/are the eigenvector(s) for the matrix given below?

$$\left( {\matrix{ { - 9} & { - 6} & { - 2} & { - 4} \cr { - 8} & { - 6} & { - 3} & { - 1} \cr {20} & {15} & 8 & 5 \cr {32} & {21} & 7 & {12} \cr } } \right)$$

A
$$\left( {\matrix{ { - 1} \cr 1 \cr 0 \cr 1 \cr } } \right)$$
B
$$\left( {\matrix{ 1 \cr 0 \cr { - 1} \cr 0 \cr } } \right)$$
C
$$\left( {\matrix{ { - 1} \cr 0 \cr 2 \cr 2 \cr } } \right)$$
D
$$\left( {\matrix{ 0 \cr 1 \cr { - 3} \cr 0 \cr } } \right)$$
2
GATE CSE 2021 Set 2
MCQ (Single Correct Answer)
+2
-0.66

For two n-dimensional real vectors P and Q, the operation s(P, Q) is defined as follows:

$$s\left( {P,\;Q} \right) = \mathop \sum \limits_{i = 1}^n \left( {p\left[ i \right].Q\left[ i \right]} \right)$$

Let L be a set of 10-dimensional non-zero vectors such that for every pair of distinct vectors P, Q ∈ L, s(P, Q) = 0. What is the maximum cardinality possible for the set L ?

A
100
B
10
C
9
D
11
3
GATE CSE 2021 Set 1
Numerical
+2
-0

Consider the following matrix.

$$\left( {\begin{array}{*{20}{c}} 0&1&1&1\\ 1&0&1&1\\ 1&1&0&1\\ 1&1&1&0 \end{array}} \right)$$

The largest eigenvalue of the above matrix is ______

Your input ____
4
GATE CSE 2020
MCQ (Single Correct Answer)
+2
-0.67
Let A and B be two n$$ \times $$n matrices over real numbers. Let rank(M) and det(M) denote the rank and determinant of a matrix M, respectively. Consider the following statements,

I. rank(AB) = rank(A) rank(B)
II. det(AB) = det(A) det(B)
III. rank(A + B) $$ \le $$ rank(A) + rank(B)
IV. det(A + B) $$ \le $$ det(A) + det(B)

Which of the above statements are TRUE?
A
I and II only
B
II and III only
C
I and IV only
D
III and IV only
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization