Discrete Mathematics
Set Theory & Algebra
Marks 1Marks 2Marks 5
Linear Algebra
Marks 1Marks 2
Combinatorics
Marks 1Marks 2
Mathematical Logic
Marks 1Marks 2Marks 5
Probability
Marks 1Marks 2
1
GATE CSE 2025 Set 1
MCQ (Single Correct Answer)
+2
-0

Let $A$ be a $2 \times 2$ matrix as given.

$$A=\left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right]$$

What are the eigenvalues of the matrix $A^{13}$ ?

A
$1,-1$
B
$2 \sqrt{2},-2 \sqrt{2}$
C
$4 \sqrt{2},-4 \sqrt{2}$
D
$64 \sqrt{2},-64 \sqrt{2}$
2
GATE CSE 2024 Set 2
MCQ (More than One Correct Answer)
+2
-0

Let A be an n × n matrix over the set of all real numbers ℝ. Let B be a matrix obtained from A by swapping two rows. Which of the following statements is/are TRUE?

A

The determinant of B is the negative of the determinant of A

B

If A is invertible, then B is also invertible

C

If A is symmetric, then B is also symmetric

D

If the trace of A is zero, then the trace of B is also zero

3
GATE CSE 2024 Set 1
MCQ (More than One Correct Answer)
+2
-0

Let A be any n x m matrix, where m > n. Which of the following statements is/are TRUE about the system of linear equations Ax = 0?

A

There exist at least m - n linearly independent solutions to this system

B

There exist m - n linearly independent vectors such that every solution is a linear combination of these vectors

C

There exists a non-zero solution in which at least m - n variables are 0

D

There exists a solution in which at least n variables are non-zero

4
GATE CSE 2022
MCQ (Single Correct Answer)
+2
-0.67

Which one of the following is the closed form for the generating function of the sequence (an}n $$\ge$$ 0 defined below?

$${a_n} = \left\{ {\matrix{ {n + 1,} & {n\,is\,odd} \cr {1,} & {otherwise} \cr } } \right.$$

A
$${{x(1 + {x^2})} \over {{{(1 - {x^2})}^2}}} + {1 \over {1 - x}}$$
B
$${{x(3 - {x^2})} \over {{{(1 - {x^2})}^2}}} + {1 \over {1 - x}}$$
C
$${{2x} \over {{{(1 - {x^2})}^2}}} + {1 \over {1 - x}}$$
D
$${x \over {{{(1 - {x^2})}^2}}} + {1 \over {1 - x}}$$
GATE CSE Subjects
Theory of Computation
Operating Systems
Algorithms
Digital Logic
Database Management System
Data Structures
Computer Networks
Software Engineering
Compiler Design
Web Technologies
General Aptitude
Discrete Mathematics
Programming Languages
Computer Organization